Строительные конструкции. Классификация строительных конструкций Основы конструктивных решений зданий

Строительные конструкции. Классификация строительных конструкций Основы конструктивных решений зданий
Строительные конструкции. Классификация строительных конструкций Основы конструктивных решений зданий

Строительные конструкции, несущие и ограждающие конструкции зданий и сооружений.

Классификация и области применения. Разделение строительных конструкций по функциональному назначению на несущие и ограждающие в значительной мере условно. Если такие конструкции, как арки, фермы или рамы, являются только несущими, то панели стен и покрытий, оболочки, своды, складки и т.п. обычно совмещают ограждающие и несущие функции, что отвечает одной из важнейших тенденций развития современных строительных конструкций.В зависимости от расчётной схемы несущие строительные конструкции подразделяют на плоские (например, балки, фермы, рамы) и пространственные (оболочки, своды, купола и т.п.). Пространственные конструкции характеризуются более выгодным (по сравнению с плоскими) распределением усилий и, соответственно, меньшим расходом материалов; однако их изготовление и монтаж во многих случаях оказываются весьма трудоёмкими. Новые типы пространственных конструкций, например структурные конструкции из прокатных профилей на болтовых соединениях, отличаются как экономичностью, так и сравнительной простотой изготовления и монтажа. По виду материала различают следующие основные типы строительных конструкций: бетонные и железобетонные.

Бетонные и железобетонные конструкции - наиболее распространённые (как по объёму, так и по областям применения). Специальные виды бетона и железобетона используют при строительстве сооружений, эксплуатируемых при высоких и низких температурах или в условиях химически агрессивных сред (тепловые агрегаты, здания и сооружения чёрной и цветной металлургии, химической промышленности и др.). Уменьшение массы, снижение стоимости и расхода материалов в железобетонных конструкциях возможны на основе использования высокопрочных бетонов и арматуры, роста производства предварительно напряженных конструкций, расширения областей применения лёгких и ячеистых бетонов.

Стальные конструкции применяются главным образом для каркасов большепролётных зданий и сооружений, для цехов с тяжёлым крановым оборудованием, домен, резервуаров большой ёмкости, мостов, сооружений башенного типа и др. Области применения стальных и железобетонных конструкций в ряде случаев совпадают. Существенное преимущество стальных конструкций (по сравнению с железобетонными) - их меньшая масса.

Требования, предъявляемые к строительным конструкциям. С точки зрения эксплуатационных требований С. К. должны отвечать своему назначению, быть огнестойкими и коррозиеустойчивыми, безопасными, удобными и экономичными в эксплуатации.

Расчёт С. К. Строительные конструкции должны быть рассчитаны на прочность, устойчивость и колебания. При этом учитываются силовые воздействия, которым конструкции подвергаются при эксплуатации (внешние нагрузки, собственный вес), влияние температуры, усадки, смещения опор и т.д., а также усилия, возникающие при транспортировке и монтаже строительных конструкций.

Фундаменты зданий и сооружений - части зданий и сооружений (преимущественно подземные), которые служат для передачи нагрузок от зданий (сооружений) на естественное или искусственное основание.
Стена здания - основная ограждающая конструкция здания. Наряду с ограждающими функциями стены одновременно в той или иной степени выполняют и несущие функции (служат опорами для восприятия вертикальных и горизонтальных нагрузок).

Каркас (франц. carcasse, от итал. carcassa) в технике - остов (скелет) какого-либо изделия, конструктивного элемента, целого здания или сооружения, состоящий из отдельных скрепленных между собой стержней. Каркас выполняется из дерева, металла, железобетона и др. материалов. Он определяет собой прочность, устойчивость, долговечность, форму изделия или сооружения. Прочность и устойчивость обеспечиваются жёстким скреплением стержней в узлах сопряжения или шарнирного соединения и специальными элементами жёсткости, которые придают изделию или сооружению геометрически неизменяемую форму. Увеличение жёсткости каркаса нередко достигается включением в работу оболочки, обшивки или стенок изделия или сооружения.

Перекрытия - горизонтальные несущие и ограждающие конструкции. Они воспринимают вертикальные и горизонтальные силовые воздействия и передают их на несущие стены или каркас. Перекрытия обеспечивают тепло- и звукоизоляцию помещений.

Полы в жилых и общественных зданиях должны удовлетворять требованиям прочности и сопротивляемости износу, достаточной эластичности и бесшумности, удобства уборки. Конструкция пола зависит от назначения и характера помещений, где он устраивается.

Крыша - наружная несущая и ограждающая конструкция здания, которая воспринимает вертикальные (в том числе снеговые) и горизонтальные нагрузки и воздействия. (Ветер - нагрузка)

Лестницы в зданиях служат для вертикальной связи помещений, находящихся на разных уровнях. Расположение, число лестниц в здании и их размеры зависят от принятого архитектурно-планировочного решения, этажности, интенсивности людского потока, а также требований пожарной безопасности.



Окна устраиваются для освещения и проветривания (вентиляции) помещений и состоят из оконных проемов, рам или коробок и заполнения проемов, называемого оконными переплетами.

Вопрос №12. Поведение зданий и сооружений в условиях пожара, их огнестойкость и пожарная опасность

Нагрузки и воздействия которым, подвергается здание в нормальных условиях эксплуатации, учитывают при расчете прочности строительных конструкций. Однако при пожарах возникают дополнительные нагрузки и воздействия, которые во многих случаях приводят к разрушению отдельных конструкций и зданий в целом. К неблагоприятным факторам относится: высокая температура, давление газов и продуктов горения, динамические нагрузки от падающих обломков обрушившихся элементов здания и пролитой воды, резкие колебания температур. Способность конструкции сохранять свои функции (несущие, ограждающие) в условиях пожара сопротивляться воздействию огня называется огнестойкостью строительной конструкции.

Строительные конструкции характеризуются огнестойкостью и пожарной опасностью.

Показателем огнестойкости является предел огнестойкости, пожарную опасность конструкции характеризует класс ее пожарной опасности.

Строительные конструкции зданий, сооружений и строений в зависимости от их способности сопротивляться воздействию пожара и распространению его опасных факторов в условиях стандартных испытаний подразделяются на строительные конструкции со следующими пределами огнестойкости:

Ненормируемый;- не менее 15 мин;- не менее 30 мин;-не менее 45 мин;- не менее 60 мин;-не менее 90 мин;- не менее 120 мин;- не менее 180 мин;- не менее 360 мин.

Предел огнестойкости строительных конструкций устанавливается по времени (в минутах) наступления одного или последовательно нескольких, нормируемых для данной конструкции, признаков предельных состояний:потери несущей способности (R);потери целостности (Е);потери теплоизолирующей способности (I).

Пределы огнестойкости строительных конструкций и их условные обозначения устанавливают по ГОСТ 30247. При этом предел огнестойкости окон устанавливается только по времени наступления потери целостности (Е).

По пожарной опасности строительные конструкции подразделяются на четыре класса: КО (непожароопасные); К1 (малопожароопасные); К2 (умереннопожароопасные);КЗ (пожароопасные).

Вопрос№ 13. Металлические конструкции и их поведение в условиях пожара, способы повышения огнестойкости конструкций.

Хотя металлические конструкции выполнены из несгораемого материала, фактический предел их огнестойкости в среднем составляет 15 минут. Это объясняется достаточно быстрым снижением прочностных и деформативных характеристик металла при повышенных температурах во время пожара. Интенсивность нагрева МК (металлической конструкции) зависит от ряда факторов, к которым относятся характер нагрева конструкций и способы их защиты. В случае кратковременного действия температуры при реальном пожаре, после воспламенения горючих материалов металл подвергается нагреву более медленно и менее интенсивно, чем нагрев окружающей среды. При действии «стандартного» режима пожара температура окружающей среды не перестает повышаться и тепловая инерция металла, обуславливающая некоторую задержку нагрева, наблюдается только в течение первых минут пожара. Затем температура металла приближается к температуре нагревающей среды. Защита металлического элемента и эффективность этой защиты также влияют на нагрев металла.

При действии на балку высоких температур при пожаре сечение конструкции быстро прогревается до одинаковой температуры. При этом снижается предел текучести и модуль упругости. Обрушение прокатных балок наблюдается в сечении, где действует максимальный изгибающий момент.

Воздействие температуры пожара на ферму приводит к исчерпанию несущей способности ее элементов и узловых соединений этих элементов. Потеря несущей способности в результате снижения прочности металла характерна для растянутых и сжатых элементов поясов и решетки конструкции.

Исчерпание несущей способности стальных колонн, находящихся в условиях пожара, может наступить в результате потери: прочности стержнем конструкции; прочности или устойчивости элементами соединительной решетки, а также узлов крепления этих элементов к ветвям колонны; устойчивости отдельными ветвями на участках между узлами соединительной решетки; общей устойчивости колонны.

Поведение в условиях пожара арок и рам зависит от статической схемы работы конструкции, а также конструкции сечения этих элементов.

Способы повышения огнестойкости:

· облицовка из негорючих материалов(обетонирование, облицовка из кирпича, теплоизолюционных плит, гипсокартонными листами, штукатурка);

· огнезащитные покрытия (невспучивающиеся и вспучивающиеся покрытия);

· подвесные потолки (между конструкцией и потолком создается воздушный зазор, который повышает ее предел огнестойкости).

Предельное состояние металлической конструкции: σ=R n *γ tem

Строительной конструкцией называют укрупненный строительный элемент здания, сооружения или моста, изготовленный из строительных материалов и изделий.

Классифицируются строительные конструкции по назначению и строительному материалу.

По назначению бывают:

1. Несущие – те конструкции зданий и сооружений, которые выдерживают силовые нагрузки. Они обеспечивают их устойчивость и прочность, а также позволяют безопасно эксплуатировать постройку. К ним относят: несущие стены, колоны, фундаменты, перекрытия и покрытия и др.

2. Ограждающие – конструкции, которые ограничивают объем здания и разделяют его на отдельные функциональные помещения. Делят на: наружные (защищают от атмосферных воздействий) и внутренние (для обеспечения звукоизоляции и деления внутреннего пространства). К ограждающим конструкциям относят перегородки, самонесущие стены, заполнения проемов и т.д.

По материалу строительные конструкции делят на:

Бетонные и железобетонные;

Металлоконструкции;

Деревянные;

Каменные и армокаменные;

Пластмассовые;

Комплексные (комбинируют несколько видов материалов).

Основные требования, которые предъявляют к строительным конструкциям:

1. Надежность. Это понятие включает в себя три составляющие: прочность, жесткость и устойчивость.

Прочность – это способность конструкции воспринимать все нагрузки без разрушений;

Жесткость – свойство, которое позволяет строительной конструкции под действием нагрузок деформироваться в допустимых пределах;

Устойчивость – способность конструкции сохранять неизменное положение в пространстве под действием нагрузок.

2. Удобство эксплуатации – это возможность использовать здания и сооружения по своему назначению. Нужно, чтобы конструкции были запроектированы таким образом, чтобы имелась возможность легко их осматривать, ремонтировать, реконструировать и усилить.

3. Экономичность . При проектировании необходимо сделать так, чтобы не было перерасхода строительных материалов и стараться обеспечить минимальные трудовые затраты при монтаже конструкции.

9.2. Железобетонные конструкции и изделия

Железобетонные конструкции и изделия , элементы зданий и сооружений, изготовляемые из железобетона, и сочетания этих элементов.

Высокие технико-экономические показатели железобетонных конструкций, возможность сравнительно легко придавать им требуемую форму и размеры при соблюдении заданной прочности, обусловили их широкое применение практически во всех отраслях строительства. Современные железобетонные конструкции (ЖБК) классифицируются по нескольким признакам: по способу выполнения (монолитные, сборные, сборно-монолитные), виду бетона, применяемого для их изготовления (из тяжёлых, лёгких, ячеистых, жаростойких и др. бетонов), виду напряжённого состояния (обычные и предварительно напряжённые).

Монолитные железобетонные конструкции , выполняемые непосредственно на строительных площадках, обычно применяются в зданиях и сооружениях, трудно поддающихся членению, при нестандартности и малой повторяемости элементов и при особенно больших нагрузках (фундаменты, каркасы и перекрытия многоэтажных промышленных зданий, гидротехнические, мелиоративные, транспортные и др. сооружения).

В ряде случаев они целесообразны при выполнении работ индустриальными методами с использованием инвентарных опалубок - скользящей, переставной (башни, градирни, силосы, дымовые трубы, многоэтажные здания) и передвижной (некоторые тонкостенные оболочки покрытий).

Возведение монолитных железобетонных конструкций технически хорошо отработано. Значительные достижения имеются также в применении метода предварительного напряжения при производстве монолитных конструкций. В монолитном железобетоне выполнено большое количество уникальных сооружений (телевизионные башни, промышленные трубы большой высоты, реакторы атомных электростанций и др.). В современной строительной практике ряда зарубежных стран (США, Великобритании, Франции и др.) монолитные железобетонные конструкции получили широкое распространение, что объясняется главным образом отсутствием в этих странах государственной системы унификации параметров и типизации конструкций зданий и сооружений. В СССР монолитные конструкции преобладали в строительстве до 30-х гг.

Внедрение более индустриальных сборных конструкций в те годы сдерживалось из-за недостаточного уровня механизации строительства, отсутствия специального оборудования для их массового изготовления, а также монтажных кранов большой производительности. Удельный вес монолитных железобетонных конструкций в общем объёме производства железобетона в СССР составляет примерно 35% (1970).

Сборные железобетонные конструкции и изделия - основной вид конструкций и изделий, применяемых в различных отраслях строительства: жилищно-гражданском, промышленном, сельскохозяйственном и др.

Сборные конструкции имеют существенные преимущества перед монолитными, они создают широкие возможности для индустриализации строительства. Применение крупноразмерных железобетонных элементов позволяет основную часть работ по возведению зданий и сооружений перенести со строительной площадки на завод с высокоорганизованным технологическим процессом производства. Это значительно сокращает сроки строительства, обеспечивает более высокое качество изделий при наименьшей их стоимости и затратах труда; использование сборных железобетонных конструкций позволяет широко применять новые эффективные материалы (лёгкие и ячеистые бетоны, пластмассы и др.), уменьшает расход лесоматериалов и стали, необходимых в др. отраслях народного хозяйства. Сборные конструкции и изделия должны быть технологичны и транспортабельны, они особенно выгодны при минимальном количестве типоразмеров элементов, повторяющихся много раз.

С ростом производства и применения в строительстве сборного железобетона совершенствовалась технология его изготовления. Была осуществлена также унификация основных параметров зданий и сооружений различного назначения, на основе, которой разработаны и внедрены типовые конструкции и изделия для них.

В зависимости от назначения в строительстве жилых, общественных, промышленных и сельскохозяйственных зданий и сооружений различают следующие наиболее распространённые сборные ЖБК:

Для фундаментов и подземных частей зданий и сооружений (фундаментные блоки и плиты, панели и блоки стен подвалов);

Для каркасов зданий (колонны, ригели, прогоны, подкрановые балки, стропильные и подстропильные балки, фермы);

Для наружных и внутренних стен (стеновые и перегородочные панели и блоки);

Для междуэтажных перекрытий и покрытий зданий (панели, плиты и настилы); для лестниц (лестничные марши и площадки);

Для санитарно-технических устройств (отопительные панели, блоки вентиляционные и мусоропроводов, санитарно-технические кабины).

Сборные ЖБК изготовляют преимущественно на механизированных предприятиях и частично на оборудованных полигонах. Технологический процесс производства железобетонных изделий складывается из ряда последовательно выполняемых операций: приготовления бетонной смеси, изготовления арматуры (арматурных каркасов, сеток, гнутых стержней и т. д.), армирования изделий, формования изделий (укладка бетонной смеси и её уплотнение), тепловлажностной обработки, обеспечивающей необходимую прочность бетона, отделки лицевой поверхности изделий.

В современной технологии сборного железобетона можно выделить 3 основных способа организации производственного процесса: агрегатно-поточный способ изготовления изделий в перемещаемых формах; конвейерный способ производства; стендовый способ в неперемещаемых (стационарных) формах.

При агрегатно-поточном способе все технологические операции (очистка и смазка форм, армирование, формование, твердение, распалубка) осуществляются на специализированных постах, оборудованных машинами и установками, образующими поточную технологическую линию. Формы с изделиями последовательно перемещаются по технологической линии от поста к посту с произвольным интервалом времени, зависящим от длительности операции на данном посту, которая может колебаться от нескольких минут (например, смазка форм), до нескольких часов (твердение изделий в пропарочных камерах). Этот способ выгодно использовать на заводах средней мощности, в особенности при выпуске конструкций и изделий широкой номенклатуры.

Конвейерный способ применяют на заводах большой мощности при выпуске однотипных изделий ограниченной номенклатуры. При этом способе технологическая линия работает по принципу пульсирующего конвейера, т. е. формы с изделиями перемещаются от поста к посту через строго определённое время, необходимое для выполнения самой длительной операции.

Разновидностью этой технологии является способ вибропроката , применяемый для изготовления плоских и ребристых плит; в этом случае все технологические операции выполняются на одной движущейся стальной ленте. При стендовом способе изделия в процессе их изготовления и до затвердевания бетона остаются на месте (в стационарной форме), в то время как технологическое оборудование для выполнения отдельных операций перемещается от одной формы к другой. Этот способ применяют при изготовлении изделий большого размера (ферм, балок и т. п.). Для формования изделий сложной конфигурации (лестничных маршей, ребристых плит и т. п.) используют матрицы - железобетонные или стальные формы, воспроизводящие отпечаток ребристой поверхности изделия. При кассетном способе, являющемся разновидностью стендового, изделия изготовляют в вертикальных формах - кассетах, представляющих собой ряд отсеков, образованных стальными стенками. На кассетной установке происходят формование изделий и их твердение. Кассетная установка имеет устройства для обогрева изделий паром или электрическим током, что значительно ускоряет твердение бетона. Кассетный способ обычно применяют для массового производства тонкостенных изделий.

Готовые изделия должны отвечать требованиям действующих стандартов или технических условий. Поверхности изделий обычно выполняют с такой степенью заводской готовности, чтобы на месте строительства не требовалось их дополнительной отделки.

При монтаже сборные элементы зданий и сооружений соединяются друг с другом омоноличиванием или сваркой закладных деталей, рассчитанных на восприятие определенных силовых воздействий. Большое внимание уделяется снижению металлоемкости сварных соединений и их унификации. Наибольшее распространение сборные конструкции и изделия получили в жилищно-гражданском строительстве, где крупноэлементное домостроение (крупнопанельное, крупноблочное, объёмное) рассматривается как наиболее перспективное. Из сборного железобетона организовано также массовое производство изделий для инженерных сооружений (т. н. специального железобетона): пролётные строения мостов, опоры, сваи, водопропускные трубы, лотки, блоки и тюбинги для обделки туннелей, плиты покрытий дорог и аэродромов, шпалы, опоры контактной сети и линий электропередачи, элементы ограждений, напорные и безнапорные трубы и др.

Значительная часть этих изделий выполняется из предварительно напряжённого железобетона стендовым или поточно-агрегатным способом. Для формования и уплотнения бетона применяются весьма эффективные методы: вибропрессование (напорные трубы), центрифугирование (трубы, опоры), виброштампование (сваи, лотки).

Для развития сборного железобетона характерна тенденция к дальнейшему укрупнению изделий и повышению степени их заводской готовности. Так, например, для покрытий зданий используются многослойные панели, поступающие на строительство с утеплителем и слоем гидроизоляции; блоки размером 3х18 м и 3х24 м, сочетающие в себе функции несущей и ограждающей конструкций. Разработаны и успешно применяются совмещенные кровельные плиты из лёгкого и ячеистого бетонов. В многоэтажных зданиях используются предварительно напряжённые железобетонные колонны на высоту нескольких этажей. Для стен жилых зданий изготовляются панели размерами на одну-две комнаты с разнообразной внешней отделкой, снабженные оконными или дверными (балконными) блоками. Значительные перспективы для дальнейшей индустриализации жилищного строительства имеет способ возведения зданий из объёмных блоков. Такие блоки на одну-две комнаты или на квартиру изготовляются на заводе с полной внутренней отделкой и оборудованием; сборка домов из этих элементов занимает всего несколько дней.

Сборно-монолитные железобетонные конструкции представляют собой такое сочетание сборных элементов (железобетонных колонн, ригелей, плит и т. д.) с монолитным бетоном, при котором обеспечивается надёжная совместно работа всех составных частей.

Эти конструкции применяются главным образом в перекрытиях многоэтажных зданий, в мостах и путепроводах, при возведении некоторых видов оболочек и т. д.

Они менее индустриальны (в отношении возведения и монтажа), чем сборные. Их применение особенно целесообразно при больших динамических (в т. ч. сейсмических) нагрузках, а также при необходимости членения крупноразмерных конструкций на составные элементы из-за условий транспортировки и монтажа. Основное достоинство сборно-монолитных конструкций - меньший (по сравнению со сборными конструкциями) расход стали и высокая пространственная жёсткость.

Наибольшая часть ЖБК и ЖБИ выполняется из тяжёлого бетона со средней плотностью 2400 кг/м 3 . Однако доля изделий из конструктивно-теплоизоляционного и конструктивного лёгкого бетонов на пористых заполнителях, а также из ячеистого бетона всех видов непрерывно возрастает. Такие изделия используются преимущественно для ограждающих конструкций (стены, покрытия) жилых и производственных зданий.

Весьма перспективны несущие конструкции из высокопрочного тяжёлого бетона классов С30/35 и С32/40 и лёгкого бетона классов С20/25 и С25/30. Существенный экономический эффект достигается в результате применения конструкций из жаростойкого бетона (вместо штучных огнеупоров) для тепловых агрегатов металлургической, нефтеперерабатывающей и др. отраслей промышленности; для ряда изделий (например, напорных труб) перспективно применение напрягающего бетона.

Железобетонные конструкции и изделия выполняются в основном с гибкой арматурой в виде отдельных стержней, сварных сеток и плоских каркасов. Для изготовления ненапрягаемой арматуры целесообразно использование контактной сварки, обеспечивающей высокую степень индустриализации арматурных работ. Конструкции с несущей (жёсткой) арматурой применяют сравнительно редко и главным образом в монолитном железобетоне при бетонировании в подвесной опалубке. В изгибаемых элементах продольная рабочая арматура устанавливается в соответствии с эпюрой максимальных изгибающих моментов; в колоннах продольная арматура воспринимает преимущественно сжимающие усилия и располагается по периметру сечения. Кроме продольной арматуры, в ЖБК устанавливается распределительная, монтажная и поперечная арматура (хомуты, отгибы), а в некоторых случаях предусматривается т. н. косвенное армирование в виде сварных сеток и спиралей.

Все эти виды арматуры соединяются между собой и обеспечивают создание арматурного каркаса, пространственно неизменяемого в процессе бетонирования. Для напрягаемой арматуры предварительно напряжённых ЖБК используют высокопрочные стержневую арматуру и проволоку, а также пряди и канаты из неё. При изготовлении сборных конструкций применяется в основном метод натяжения арматуры на упоры стендов или форм; для монолитных и сборно-монолитных конструкций - метод натяжения арматуры на бетон самой конструкции.

Широкие формообразующие и технические возможности железобетонных конструкций оказали огромное влияние на мировую архитектуру 20 века. На основе железобетонных конструкций сложились новые масштабы, архитектоника и пространственная организация зданий и сооружений. Прямолинейные каркасные конструкции придают зданиям строгий геометризм форм и мерный ритм членений, чёткость структуры. Горизонтальные плиты перекрытий покоятся на тонких опорах, лёгкая стена, будучи лишена несущей функции, нередко превращается в стеклянный экран-завесу. Равномерное распределение статических усилий создаёт тектоническую равнозначность элементов постройки. Большой пластической и пространственной выразительностью обладают криволинейные конструкции (особенно тонкостенные оболочки различных, иногда причудливых очертаний), с их сложной тектоникой форм (порой приближающихся к скульптурным) и непрерывно сменяющимся ритмом элементов. Криволинейные конструкции позволяют перекрывать без промежуточных опор огромные зальные помещения и создавать необычные по форме объёмно-пространственные композиции. Некоторые современные железобетонные конструкции (например, решётчатые) обладают орнаментально-декоративными качествами, формирующими облик фасадов и покрытий. Пластически осмысленные современные железобетонные конструкции придают эстетическую выразительность не только жилым и гражданским зданиям, но и инженерным и промышленным сооружениям (мостам, эстакадам, плотинам, градирням и др.).

Несущие конструкции.

Железобетонные колонны:

Рис. 9.1. Колонна двухветвевая среднего ряда

Рис. 9.2. Колонна двухветвевая крайнего ряда

Рис. 9.3. . Колонны безригельного каркаса

Рис. 9.4. Колонна одноэтажных промышленных зданий

а) Колонна среднего ряда с двумя консолями

Рис. 9.5. Одноветвевая колонная среднего ряда

б) Колонна крайнего ряда с одной консолью

Рис. 9.6. Одноветвевая колонна крайнего ряда

Рис. 9.7. Колонна среднего ряда одноветвевая для многоэтажных зданий

Рис. 9.8. Одноветвевая колонна административно-бытовых зданий

Рис. 9.9. Одноветвевая колонна складских зданий

Рис. 9.10. Одноветвевые колонны многоэтажных административно-бытовых зданий

Рис. 9.11. Железобетонный ригель с полками

Рис. 9.12. Железобетонный ригель связевый

Ригели предназначены для каркасов многоэтажных зданий, производственного, административного и бытового назначения, промышленных предприятий, жилых домов и торгово-развлекательных комплексов.

Морозостойкость не ниже F50.

Рис. 9.13. Балки железобетонные таврового сечения

Рис. 9.14. Балки железобетонные таврового сечения

Балки предназначены для каркасов многоэтажных зданий, производственных, административных и бытовых зданий промышленных предприятий, жилых домов и торгово-развлекательных комплексов.

Морозостойкость не ниже F50.

Основы конструктивных решений зданий

По назначению строительные конструкции подразделяют на несущие, ограждающие и совмещенные .

Конструкции несущие – строительные конструкции, воспринимающие нагрузки и воздействия и обеспечивающие надежность, жесткость и устойчивость зданий. Несущие конструкции, образующие остов здания (конструктивную систему) относят к основным: фундаменты, стены, отдельные опоры, перекрытия, покрытия и т.п. остальные несущие конструкции относятся к второстепенным, например, перемычки над проемами, лестницы, блоки шахт лифтов.

Конструкции ограждающие – строительные конструкции, предназначенные для изоляции внутренних объемов в зданиях от внешней среды или между собой с учетом нормативных требований по прочности, теплоизоляции, гидроизоляции, пароизоляции, воздухонепроницаемости, звукоизоляции, светопропусканию и т.д. Основные ограждающие конструкции – ненесущие стены, перегородки, окна, витражи, фонари, двери, ворота.

Конструкции совмещенные – строительные конструкции зданий и сооружений различного назначения, выполняющие несущие и ограждающие функции (стены, перекрытия, покрытия).

По пространственному расположению несущие строительные конструкции здания разделяют на вертикальные и горизонтальные.

Горизонтальные несущие конструкции –покрытия и перекрытия – воспринимают все приходящиеся на них вертикальные нагрузки и поэтажно передают их вертикальным несущим конструкциям (стенам, колоннам и др.), которые, в свою очередь, передают нагрузки основанию здания. Горизонтальные несущие конструкции, как правило, играют в зданиях также роль жестких дисков – горизонтальных диафрагм жесткости, они воспринимают и перераспределяют горизонтальные нагрузки и воздействия (ветровые, сейсмические) между вертикальными несущими конструкциями.

Передача горизонтальных нагрузок с перекрытий на вертикальные конструкции осуществляется по двум основным вариантам: с распределением на все вертикальные несущие элементы или только на отдельные вертикальные элементы жесткости (стены-диафрагмы, решетчатые ветровые связи или стволы жесткости). При этом все остальные опоры работают только на вертикальные нагрузки. Применяют также и промежуточное решение: распределение горизонтальных нагрузок и воздействий в различных пропорциях между элементами жесткости и конструкциями, работающими преимущественно на восприятие вертикальных нагрузок.

Перекрытия-диафрагмы обеспечивают совместность и равенство горизонтальных перемещений вертикальных несущих конструкций при ветровых и сейсмических воздействиях. Такая совместимость и выравнивание достигаются жестким сопряжением горизонтальных несущих конструкций с вертикальными.

Горизонтальные несущие конструкции капитальных гражданских зданий высотой более двух этажей однотипны и представляют собой обычно железобетонный диск – сборный, сборно-монолитный или монолитный.

По функциональному назначению строительные конструкции подразделяются на несущие и ограждающие. Существуют также такие конструкции, как арки, фермы или рамы. Они являются несущими. А такие строительные конструкции как панели для стен, оболочки, своды соединяют в себе и ограждающие и несущие функции.

Несущие строительные конструкции в зависимости от расчетной схемы делятся на плоские (балки, фермы, рамы и др.) и пространственные (оболочки, своды, купола и др.). Пространственные строительные конструкции обладают более выгодным распределением усилий, в сравнении с плоскими конструкциями. Это, в свою очередь, требует меньшего расхода материалов, однако сборка и производство таких строительных конструкций является крайне трудоемким. На сегодняшний день появились новые типы пространственных конструкций - структурные конструкции, изготовленные из прокатных профилей, закрепленных болтовыми соединениями. Такой тип строительной конструкции обладает простотой изготовления и монтажа, экономичностью.

Строительные конструкции по виду материала бывают:

  • бетонные;

Это наиболее встречающиеся виды строительных конструкций на данный момент.

Современное строительство применяет железобетон в виде сборных конструкций. Сфера применения таких конструкций: строительство жилых, производственных зданий, различных сооружений. Целесообразное применение монолитного железобетона — это различные гидротехнические постройки, покрытия дорог, аэродромов, строительство фундаментов под промышленное оборудование, всевозможные резервуары, элеваторы и т. п.

При возведении сооружений, которые эксплуатируются в условиях агрессивной внешней среды или особых климатических условиях (например, повышенная температура, влажность), используют специальные виды бетона и железобетона. К примеру такими сооружениями являются тепловые агрегаты, здания химической промышленности и другие.

В железобетонных строительных конструкциях за счет использования особо прочных бетонов, арматуры, увеличения изготовления напряженных конструкций допустимо уменьшение массы конструкции, понижение цены и расхода материалов, увеличение сфер применения лёгких и ячеистых бетонов.

Области применения строительных конструкций.

Сфера применения стальных строительных конструкций иногда совпадает с использованием железобетонных конструкций. Это, в частности, каркасы большепролетных зданий , цеха с тяжелым и громоздким оборудованием, промышленные резервуары больших емкостей, мосты и др. Выбор типа строительной конструкции зависит от его стоимости, района строительства, расположения предприятия. Главное преимущество стальных строительных конструкций от железобетонных - малая масса. Это позволяет применять данные конструкции в малодоступных районах: на Крайнем Севере, в районах с повышенной сейсмической активностью, пустынных, горных районах и т. д.

Создание продуктивных объемных конструкций (из тонколистовой стали), увеличение объемов применения сталей высокой прочности и экономичных профилей проката сделают возможным уменьшить вес зданий и сооружений.

Главная область применения каменных строительных конструкций - возведение стен и перегородок. Архитектурные сооружения и здания из кирпича, мелких блоков и природного камня меньше соответствуют требованиям промышленного строительства, чем крупнопанельные здания, поэтому их доля во всех объемах строительства, падает.

В строительстве также применяют клееные деревянные конструкции двух видов: несущие и ограждающие. Несущие конструкции состоят из нескольких слоев древесины и склеены между собой. Зачастую их усиливают путем вставления арматуры.

Изготовление клееных деревянных конструкций осуществляется в заводских условиях, все процессы производятся механическим путем

Основная тенденция в изменении деревянных конструкций - это переход к строительным конструкциям из клееной древесины. Допустимость промышленного изготовления и получения элементов определенной конструкции нужных размеров с помощью их склеивания дает преимущества в сравнении с деревянными конструкциями других типов. Клееные строительные конструкции находят широкое применение в сельскохозяйственном строительстве.

В тенденциях современного строительства широкое распространение получают новые виды промышленных строительных конструкций : асбестоцементные, пневматические, конструкции из легких сплавов. Достоинствами данных конструкций являются: низкая удельная масса, возможность заводского изготовления на механических поточных линиях. Более легкие трехслойные панели начинают применяться как ограждающие конструкции вместо тяжелых железобетонных и керамзитобетонных панелей.

Требования, предъявляемые к строительным конструкциям.

По соображениям требований эксплуатации, строительные конструкции должны быть огнеустойчивыми, коррозиестойкими, удобными, экономичными и безопасными в использовании. С увеличением масштабов и темпов строительства к строительным конструкциям предъявляют требования их изготовления в заводских условиях, конструкции должны быть экономными по стоимости и оптимальными по расходу материалов, удобными при транспортировке и отличаться быстротой и простотой сборки на объекте строительства.

Большое значение уделяется снижению трудоемкости, как при изготовлении строительных конструкций , так и в процессе сооружения из них зданий.

Важной задачей современного строительства является уменьшение массы строительных конструкций за счет применения легких производительных материалов и развитии различных конструктивных решений.

Расчет строительных конструкций.

Строительные конструкции при проектировании рассчитываются на прочность, устойчивость и колебания. При расчете учитываются воздействия сил, которым подвергаются конструкции при эксплуатации: собственный вес, внешние нагрузки, влияние температурных факторов, смещение опор конструкции, усилия, которые появляются при транспортировке и установке строительных конструкций.

Пожары легче предупредить, чем потушить. Эта достаточно расхожая фраза имеет огромное значение при проектировании зданий и сооружений, когда уже на самой ранней стадии возгорания можно предупредить пожар или, по крайней мере, его дальнейшее развитие.

В этом большую роль играет так называемая пассивная защита - правильно выполненные конструктивные, объемно-планировочные и инженерно-технические решения зданий и других строительных сооружений, обеспечивающие выполнение общих требований противопожарной защиты на всех этапах их создания и эксплуатации.

В ст.34 Технического регламента прописано, что строительные конструкции классифицируются по огнестойкости для установления возможности их применения в зданиях, сооружениях, строениях и пожарных отсеках определенной степени огнестойкости или для определения степени огнестойкости зданий, сооружений, строений и пожарных отсеков.

Строительные конструкции классифицируются по пожарной опасности для определения степени участия строительных конструкций в развитии пожара и их способности к образованию опасных факторов пожара.

Согласно ст.35 Технического регламента строительные конструкции зданий, сооружений и строений в зависимости от их способности сопротивляться воздействию пожара и распространению его опасных факторов в условиях стандартных испытаний подразделяются на строительные конструкции со следующими пределами огнестойкости:

1) ненормируемый;

2) не менее 15 минут;

3) не менее 30 минут;

4) не менее 45 минут;

5) не менее 60 минут;

6) не менее 90 минут;

7) не менее 120 минут;

8) не менее 150 минут;

9) не менее 180 минут;

10) не менее 240 минут;

11) не менее 360 минут.

Пределы огнестойкости строительных конструкций определяются в условиях стандартных испытаний. Наступление пределов огнестойкости несущих и ограждающих строительных конструкций в условиях стандартных испытаний или в результате расчетов устанавливается по времени достижения одного или последовательно нескольких из следующих признаков предельных состояний:

1) потеря несущей способности (R);

2) потеря целостности (Е);

3) потеря теплоизолирующей способности вследствие повышения температуры на необогреваемой поверхности конструкции до предельных значений (I) или достижения предельной величины плотности теплового потока на нормируемом расстоянии от необогреваемой поверхности конструкции (W).

Пределы огнестойкости строительных конструкций устанавливаются по ГОСТ 30247.0-94 «Конструкции строительные. Методы испытаний на огнестойкость. Общие требования». При этом предел огнестойкости окон устанавливается только по времени наступления потери целостности (Е).

Пределы огнестойкости несущих и ограждающих конструкций устанавливает ГОСТ 30247.1-94 «Конструкции строительные. Методы испытаний на огнестойкость. Несущие и ограждающие конструкции».

В соответствии с требованиями ГОСТ 30247.0-94 и ГОСТ 30247.1-94 в нашей стране проводят испытания строительных конструкций на огнестойкость, в том числе и металлических с огнезащитой. В этих же нормативных документах изложены основные положения метода испытаний конструкций на огнестойкость.

Сущность метода заключается в том, что образец конструкции, выполненной по возможности в натуральную величину, нагревают в специальной печи и одновременно подвергают воздействию нормативных нагрузок. При этом определяют время от начала испытания до появления одного из признаков, характеризующих наступление предела огнестойкости конструкции.

Для нормирования пределов огнестойкости несущих и ограждающих конструкций по ГОСТ 30247.1-94 используются следующие предельные состояния:

Для колонн, балок, ферм, арок и рам – только потеря несущей способности конструкций и узлов R;

Для наружных несущих стен и покрытий – потеря несущей способности R и целостности Е, для наружных ненесущих стен - целостности Е;

Для ненесущих внутренних стен и перегородок – потеря теплоизолирующей способности I и целостности Е;

Для несущих внутренних стен и противопожарных преград - потеря несущей способности R, целостности Е и теплоизолирующей способности I.

Обозначение предела огнестойкости состоит из условных обозначений, нормируемых для данной конструкции предельных состояний, а также - цифры, соответствующей времени достижения одного из этих состояний в минутах.

Например:

R 120- предел огнестойкости 120 мин - по потере несущей способности;

RЕ 60- предел огнестойкости 60 мин - по потере несущей способности и потере целостности независимо от того, какое из двух предельных состояний наступит ранее.

В ст.36 Технического регламента прописано:

1. Строительные конструкции по пожарной опасности подразделяются на следующие классы:

1) непожароопасные (К0);

2) малопожароопасные (К1);

3) умереннопожароопасные (К2);

4) пожароопасные (К3).

2. Класс пожарной опасности строительных конструкций определяется в соответствии с таблицей 6 приложения к Техническому регламенту.

таблица 6 приложения к Техническому регламенту

Порядок определения класса пожарной опасности строительных конструкций

Класс по­жар­ной опас­ности кон­ст­рук­ций Допускаемый размер повреждения конструкций, сантиметры Наличие Допускаемые характеристики пожарной опасности поврежденного материала +
Группа
верти­кальных горизон­тальных тепло­вого эффекта горения горюче­сти воспламе­няемости дымооб­разую­щей спо­собности
К0 отсутст­вует отсутст­вует отсутст­вует отсутст­вует отсутст­вует
К1 не более 40 не более 25 не рег­ламен­тиру­ется отсутст­вует не выше Г2+ не выше В2+ не выше Д2+
К2 более 40, но не более 80 более 25, но не более 50 не рег­ламен­тиру­ется отсутст­вует не выше Г3+ не выше В3+ не выше Д2+
К3 не регламентируется

Примечание. Знак "+" обозначает, что при отсутствии теплового эффекта не регламентируется.

3. Численные значения критериев отнесения строительных конструкций к определенному классу пожарной опасности определяются в соответствии с методами, установленными нормативными документами по пожарной безопасности.

В ст.37 Технического регламента прописано:

1. Противопожарные преграды в зависимости от способа предотвращения распространения опасных факторов пожара подразделяются на следующие типы:

1) противопожарные стены;

2) противопожарные перегородки;

3) противопожарные перекрытия;

4) противопожарные разрывы;

5) противопожарные занавесы, шторы и экраны;

6) противопожарные водяные завесы;

7) противопожарные минерализованные полосы.

2. Противопожарные стены, перегородки и перекрытия, заполнения проемов в противопожарных преградах (противопожарные двери, ворота, люки, клапаны, окна, шторы, занавесы) в зависимости от пределов огнестойкости их ограждающей части, а также тамбур-шлюзы, предусмотренные в проемах противопожарных преград в зависимости от типов элементов тамбур-шлюзов, подразделяются на следующие типы:

1) стены 1-й или 2-й тип;

2) перегородки 1-й или 2-й тип;

3) перекрытия 1, 2, 3 или 4-й тип;

4) двери, ворота, люки, клапаны, 1, 2 или 3-й тип;

экраны, шторы

5) окна 1, 2 или 3-й тип;

6) занавесы 1-й тип;

7) тамбур-шлюзы 1-й или 2-й тип.

3. Отнесение противопожарных преград к тому или иному типу в зависимости от пределов огнестойкости элементов противопожарных преград и типов заполнения проемов в них осуществляется в соответствии со статьей 88 настоящего Федерального закона».

В ст.58 Технического регламента указано:

1. Огнестойкость и класс пожарной опасности строительных конструкций должны обеспечиваться за счет их конструктивных решений, применения соответствующих строительных материалов, а также использования средств огнезащиты.

2. Требуемые пределы огнестойкости строительных конструкций, выбираемые в зависимости от степени огнестойкости зданий, сооружений и строений, приведены в таблице 21 приложения к настоящему Федеральному закону».


таблица 21 приложения к Техническому регламенту