Руководство «Руководство на технологию подготовки питьевой воды, обеспечивающую выполнение гигиенических требований в отношении хлорорганических соединений» . Хлорорганические соединения (XOC) Какие хлорорганические соединения в воде

Руководство «Руководство на технологию подготовки питьевой воды, обеспечивающую выполнение гигиенических требований в отношении хлорорганических соединений» . Хлорорганические соединения (XOC) Какие хлорорганические соединения в воде

Хлорорганические соединения (ХОС) - галопроизводные полициклических углеводородов и углеводородов алифатического ряда. Ранее широко применялись в качестве пестицидов.

Показать все


Эти вещества обладают высокой химической стойкостью к воздействиям различных факторов внешней среды. ХОС - высокостабильные и сверхстабильные , для которых наиболее характерно концентрирование в последовательных звеньях пищевых цепей.

Вплоть до 1980-х годов по масштабам производства и применения в сельском хозяйстве первое место среди других занимали и (Линдан). Это стало причиной повсеместного загрязнения всех объектов окружающей среды остаточными количествами хлорорганических . Положение наглядно характеризуется тем фактором, что даже в снежном покрове Антарктиды к концу прошлого столетия накопилось более 3000 тонн .

История

В 1939 году доктор Пауль Мюллер, сотрудник швейцарской химической компании «Гейги» (позже «Сиба-Гейги», сейчас «Новатис»), обнаружил особые инсектицидные свойства , больше известного как . Это вещество было синтезировано ранее, в 1874 году, немецким студентом - химиком Отмаром Цейдлером. В 1948 году Мюллер получил за создание этого ин-сектицида Нобелевскую премию.

Благодаря простоте получения и высокой против большинства насекомых, этот препарат в течение короткого времени получил большую популярность и широкое распространение по всему миру. Во время Великой Отечественной войны благодаря применению были остановлены многие эпидемии. Более 1 млрд человек благодаря этому препарату были избавлены от малярии. История медицины не знала подобных успехов.

Одновременно группа хлорсодержащих соединений, к которым принадлежал , активно исследовалась. В 1942 году она была пополнена эффективным в уничтожении препаратом - и его гамма-изомером - впервые был синтезирован Фарадеем в 1825 году). За 40-летний период, начиная с 1947 года, когда активно заработали заводы по производству хлорорганических препаратов, их было выпущено 3 628 720 т с содержанием хлора 50-73%.

Однако вскоре выяснилось, что и другие хлорорганические препараты имеют высокую , способны преодолевать длинные пищевые цепочки и могут сохраняться в природных объектах в течение многих лет, что послужило поводом для резкого сокращения использования хлорорганических соединений по всему миру.

В 1970-х и в начале 1980-х годов после признания опасности для многих живых организмов в некоторых промышленных странах было введено ограничение или полное запрещение его использования (в 1986 г. Японией и США было выпущено примерно на 20% меньше хлорорганических , чем в 1980 г). Но в целом по миру потребление линдана и заметно не уменьшилось из-за роста их использования в странах Азии, Африки и Латинской Америки. Некоторые государства были вынуждены постоянно применять для борьбы с возбудителями малярии и других опасных болезней.

В нашей стране в 1970 году было принято решение изъять высокотоксичные из ассортимента , которые применяются на фуражных и продовольственных культурах, однако в сельском хозяйстве их продолжали активно применять вплоть до 1975 года и позднее в борьбе с переносчиками инфекционных заболеваний.

Значительно позже, в 1998 г., по предложению ООН в рамках программы по охране окружающей среды была принята конвенция, которая ограничила торговлю опасными веществами и типа , органофосфатов и ртутных соединений. Многочисленными исследованиями было показано, что стойкие хлорорганические соединения обнаруживаются практически во всех организмах, обитающих в воде и на суше. 95 стран приняли участие в новом международном договоре. В это же время, в перечень токсикантов, обязательных для контроля, были включены и .

Физико-химические свойства

ХОС отличаются высокой стойкостью к воздействию факторов внешней среды (влаги, температуры, солнечной инсоляции и пр.).

В организме насекомых, а также других живых существ производных хлорированных углеводородов происходит по трем основным направлениям:

От направленности процессов зависят токсикологические свойства соединения и его избирательность.

Действие на вредные организмы

. Систематическое использование хлорорганических ведет к появлению устойчивых популяций насекомых, при этом возникает групповая приобретенная .

Токсикологические свойства и характеристики

В гидросфере

. При попадании в воду ХОС остаются в ней на протяжении нескольких недель или даже месяцев. Одновременно вещества поглощаются водными организмами (растениями, животными) и накапливаются в них.

В водных экосистемах происходит сорбция хлорорганических экотоксикантов взвесями, их седиментация и захоронение в донных отложениях. В значительной степени перенос хлорорганических соединений в донные отложения происходит за счет биоседиментации - накопления в составе взвешенного органического материала. Особенно высокие концентрации ХОС наблюдаются в донных отложениях морей вблизи крупных портов. Например, в западной части Балтийского моря вблизи порта Гётеборг в осадках обнаруживалось до 600 мкг/кг .

В атмосфере

. Миграция ХОС в атмосфере (фото) является одним из ключевых путей их распространения в окружающей среде. Многолетние наблюдения привели к выводу, что в основном изомеры представлены в атмосфере в виде пара. Вклад паровой фазы в случае также очень большой (более 50%).

При средних температурах хлорорганические характеризуются малым давлением насыщенного пара. Но, попав на поверхность растений и почвы, ХОС частично переходят в газовую фазу. Кроме прямого испарения с поверхности, стоит также учитывать и переход их в атмосферу вследствие ветровой эрозии почв. Персистентные соединения в составе аэрозолей и в парообразном состоянии переносятся на значительные расстояния, поэтому сегодня загрязнение континентальных экосистем хлорорганическими носит глобальный характер.

Вымывание осадками служит одним из основных путей уменьшения концентрации ХОС в атмосфере. Содержание и линдана в дождевой воде, собиравшейся в 1980-х гг. на Европейской территории СССР в биосферных заповедниках, составляло 4-240 нг/л. Это заметно выше, чем характерные уровни концентраций (от 0,3 до 0,8 нг/л) в Северной Америке в те же годы.

В почве

. В почве препараты этой группы сохраняются от 2 до 15 лет, длительно задерживаясь в верхнем ее слое и медленно мигрируя по профилю. Время сохранения зависит от влажности почвы, ее типа, кислотности (рН) и температуры. Численность микроорганизмов также играет большую роль, так как микробы разлагают препараты.

Из почвы ХОС проникают в растения, особенно в клубне- и корнеплоды, а также в водоемы и грунтовые воды. Внесенные в почву в больших количествах, они могут угнетать процессы нитрификации в течение 1-8 нед и на короткое подавлять ее общую микробиологическую активность. Однако большого влияния на свойства почв они не оказывают.

Из-за высокой сорбционной способности почвы рассеяние и миграция любых загрязняющих примесей происходит намного медленнее, чем это наблюдается в гидросфере и атмосфере. На сорбционные характеристики земли сильно влияет содержание в ней органических веществ и влаги. Легкие песчаные почвы (песок, супесь) хуже удерживают хлорорганические экотоксиканты, которые поэтому могут легко перемещаться вниз по профилю, загрязняя подземные и грунтовые воды. Эти компоненты в богатых гумусом почвах достаточно долгое время остаются в верхних горизонтах, главным образом, в слое до 20 см. Как видно из табл.

ХОС широко используются в сельском хозяйстве как инсектициды, акарициды в борьбе с вредителями зерновых, зернобобовых и технических культур. Многие из соединений этой группы применяются для защиты от вредителей и болезней плодовых деревьев, виноградников, овощных культур, а также лесонасаждений. Этими пестицидами проводят предпосевную обработку семян и фумигацию почвы.

Хлорорганические пестициды представлены значительным количеством соединений различной структуры. Сюда входят хлорпроизводные многоядерных углеводородов (циклопарафипов), соединений диенового ряда, терпенов, бензола и др. По силе действия на теплокровных животных хлороргапическне пестициды могут быть подразделены на 4 группы: сильнодействующие (алдрин, хлорпикрин), высокотоксичные (четыреххлористый углерод, дихлорэтан, гептахлор, гексахлоран, гексахлорбутадиен, тиодан, металлилхлорид), среднетоксичные (пертан, метоксихлор кельтан, полихлорпинен, полихлоркамфен), малотоксичные (эфирсульфонат тедиои, фталан.

Важнейшим свойством большинства хлорорганических пестицидов является стойкость к воздействию различных внешних факторов (инсоляция, температура, влага и др.), что позволяет им длительное время сохраняться в почве, воде, на растениях.

Основная часть ХОС относится к среднетоксичным соединениям, лишь отдельные препараты (алдрин, дилдрин) — к весьма опасным сильнодействующим соединениям, этим обусловлено запрещение использования их в сельском хозяйстве. Ограничено применение и таких высокотоксичных пестицидов, как гексахлорбутадиен и гептахлор. Большинство ХОС способны к материальной кумуляции, местом накопления их в организме являются органы и ткани, богатые жирами и липоидами.

Токсическое действие соединений этой группы связывают с изменением ряда ферментных систем, в частности дыхательной, с нарушением тканевого дыхания. Но мнению ряда авторов, они блокируют SH-группы тканевых белков, нарушают биосинтез белков.

ХОС, получаемые путем диенового синтеза (гептахлор и др.), в процессе метаболизма образуют в организме соответствующие эпоксиды, которые более токсичны, чем основные соединения, и более длительно задерживаются в органах и тканях.

Г. В. Курчатов (1971) рассматривает хлорорганические пестициды как липоидорастворимые неэлектролиты, которые способны проходить через все защитные барьеры организма.

Клиническая симптоматика интоксикаций ХОС характеризуется разнообразием симптомов и симптомокомплексов, что указывает на политропный характер действия веществ, входящих в эту группу.

Клиническая картина острых отравлений ХОС развивается рано (через 30 мин, иногда через 3 ч), описаны случаи развития первых признаков интоксикации через 40 с после случайного попадания их на кожу. В отдельных случаях проявления интоксикации возникают после скрытого периода, который иногда продолжается несколько часов.

В картине острых отравлений ХОС выделяют несколько клинических синдромов. Ведущими из них являются синдромы токсической энцефалопатии, острого гастрита или гастроэнтерита, острой сердечно-сосудистой недостаточности, острой токсической гепатопатии с явлениями печеночно-почечной недостаточности (П. Л. Сухинина, 1970). Е. Л. Лужников (1977), Б. М. Щепотин и Д. Я. Бондаренко (1978) выделяют также синдромы нарушения внешнего дыхания и геморрагический.

Особенности клинической симптоматики острых интоксикаций ХОС зависят от индивидуальной чувствительности организма, пути поступления и дозы препарата. При пероральном поступлении начальными признаками интоксикации являются желудочно-кишечные расстройства, в дальнейшем развивается патология нервной системы; при попадании ХОС через органы дыхания интоксикация выражается в первую очередь раздражением слизистых оболочек глаз и верхних дыхательных путей; при попадании на кожу возникает гиперемия ее, развивается острое воспаленно вплоть до изъязвлений и даже некроза.

Вслед за местными проявлениями токсического действия ХОС развиваются признаки поражения центральной нервной системы: головная боль, головокружение, шум в ушах, цианоз, могут возникнуть кровоизлияния на коже, при тяжелых интоксикациях — приступы генерализованных клонических и тонических судорог (которые могут носить эпилептиформный характер), коллапс.

Синдром токсической энцефалопатии развивается в результате поражения корковых и подкорковых отделов центральной нервной системы. В начале интоксикации он проявляется головокружением, тяжестью в голове, сонливостью, тошнотой. Позже присоединяется оглушение, потеря сознания, тонические и клонические судороги. В некоторых случаях коматозное состояние может развиться сразу. Отмечается гиперемия склер и верхней половины туловища, зрачки расширены. Возможно развитие токсического энцефалита или менингоэнцефалита, параличей конечностей.

Для острых отравлений ХОС характерно угнетение центров продолговатого мозга, в частности дыхательного. В связи с этим возможны нарушения дыхания при тяжелых формах отравления. Наряду с этим может развиться и обтурациоино-аспирационная форма асфиксии, обусловленная повышенной саливацией, бронхореей, аспирацией рвотных масс и слюны, западением языка. Все это усугубляется гипертонусом дыхательной мускулатуры, ригидностью мышц грудной клетки.

Синдром острого гастрита и гастроэнтерита чаще всего является первым признаком пероральных отравлений ХОС. Тошнота, частая рвота, иногда с примесью желчи, резкая боль в надчревной области, частый жидкий стул характерны для клинической картины таких интоксикаций.

Часто при острых отравлениях ХОС наблюдается синдром острой сердечно-сосудистой недостаточности. Особенно характерен он для острых отравлений дихлорэтаном. Отмечаются глухие тоны сердца, различные формы нарушений сердечного ритма, падение артериального давления ниже критических величин (для систолического — ниже 10,7 кПа, или 80 мм рт.ст.). Развивается картина экзотоксического шока.

В патогенезе развития острой сердечно-сосудистой недостаточности имеет значение ряд механизмов. К ним относятся нарушения центральной регуляции сердечной деятельности в связи с токсическим угнетением сердечно-сосудистого центра продолговатого мозга, а также ослабление сократительной функции миокарда в результате непосредственного влияния ХОС на метаболические процессы в нем (нарушение процессов окислительного фосфорилирования и энергетического обмена). Немаловажную роль играет при этом гиповолемия, обусловленная потерей жидкости в результате острого гастроэнтерита. Она ведет к уменьшению объема циркулирующей крови.

Развивающийся метаболический ацидоз на фоне неполноценной респираторной его компенсации приводит к преобладанию анаэробных процессов окисления и возникновению некомпенсированного ацидоза, с чем связано нарушение микроциркуляции.

При тяжелых формах интоксикации острая сердечно-сосудистая недостаточность, не поддающаяся коррекции, может стать причиной гибели пострадавших.

Нередко при попадании в организм больших доз ФОС развивается токсическая дистрофия печени с явлениями гепатаргии. У пострадавших на 2—5-е сутки острого отравления появляется иктеричность склер и кожи, увеличивается печень, которая болезненна при пальпации. В крови повышается активность трансаминаз, лактатдегидрогеназы, альдолазы, билирубина (за счет прямой его фракции).

Одно из проявлений недостаточности печени — геморрагический синдром, возникновению которого способствует также токсическое поражение сосудистых стенок, гипоксия, тромбоцитопения.

Существенные изменения претерпевает свертывающая и противосвертывающая система крови, отмечается гипокоагуляция (повышаются содержание гепарина и фнбринолитическая активность крови).

Нарушение функции почек в ранних стадиях острой интоксикации обусловлено в основном снижением артериального давления, в связи с этим уменьшается почечный кровоток, развивается олигурия и даже анурия. Однако па 2—3-й сутки к этим изменениям могут присоединиться признаки токсической нефропатии (протеипурия, микрогематурия, цилиндрурия) с развитием азотемической уремии, которая нередко является причиной гибели пострадавших на протяжении первых 3 нед интоксикации четыреххлористым углеродом и дихлорэтаном.

При поступлении в организм значительных количеств ХОС через органы дыхания клиническая картина отравления может протекать по типу острого трахеобронхита с повышением температуры и изменениями крови (нейтрофильиый лейкоцитоз, повышение СОЭ).

Для острых отравлений хлорпикрином, обладающим выраженным раздражающим действием, характерны слезотечение, насморк, кашель, одышка, боль в груди, иногда астмоидные состояния, рассеянные влажные хрипы как проявление отека легких, который нередко развивается при тяжелом отравлении. Указанные синдромы сопровождаются, как правило, значительным повышением температуры, метгемоглобинемией, гемолизом. В терминальных стадиях развивается коллапс по типу серой асфиксии.

Клиническая картина хронических отравлений ХОС характеризуется последовательным развитием определенных неврологических синдромов. В наиболее ранней стадии интоксикации неврологические нарушения укладываются в синдром неспецифической токсической астении. Нередко обнаруживаются призпаки астеновегетативного или астеноорганического синдромов. Последний характеризуется микроорганическими симптомами, указывающими на преимущественную локализацию патологического процесса в стволе головного мозга, преобладают гнпостенические проявления астении и эпизодические церебральные ангнодистонические пароксизмы: внезапно наступает интенсивная головная боль с тошнотой, общей слабостью и профузным потом или приступообразными головокружениями (вращение окружающих предметов), сопровождающимися побледнением кожи и брадикардией.

В более поздней стадии хронической интоксикации ХОС в патологический процесс вовлекается периферическая нервная система. Распространенными формами патологии периферической нервной системы являются вегетативно-сенсорный полиневрит. Общими признаками для всех выделенных форм являются развитие патологии периферических нервов на фоне функциональных или органических нарушений центральной нервной системы, рецидивирующее течение с выраженным болевым компонентом, симметричность поражений, преимущественная локализация на верхних конечностях, отсутствие грубых нарушений двигательной функции и выраженных атрофии, частое сочетание с патологией печени.

В единичных случаях наблюдается диффузное поражение нервной системы по типу энцефалополиневрита в виде рассеянных, мелкоочаговых органических симптомов со статико-координаторными нарушениями и вовлечением в патологический процесс экстрапирамидной системы.

В более выраженных случаях поражаются гипоталамическая область, шейные вегетативные узлы, слуховые нервы.

Нарушения сердечно-сосудистой системы характеризуются главным образом вегетативно-сосудистой дистопией со склонностью к артериальной гипотонии, а также экстракардиальными расстройствами сердечного ритма (синусовая брадикардия) и функции проводимости миокарда. Нередко развивается токсическая дистрофия миокарда или миокардит токсико-аллергического характера, особенно у лиц, перенесших в прошлом острую интоксикацию ХОС.

Нередко при хронических интоксикациях ХОС можно обнаружить признаки пневмосклероза в средних и нижних отделах легких.

Уже в начальных стадиях хронической интоксикации ХОС нарушается секреторная функция желудка, в более поздних характерно развитие хронического гастрита с угнетением секреторной функции желудка вплоть до гистаминорезистентной ахилии.

Нарушения функционального состояния печени при хронической интоксикации сначала проявляются повышением активпости органоспецифических ферментов в сыворотке крови (аланин- и аспартаттрансферазы), позже присоединяются нарушения углеводной и антитоксической функции. При тяжелых формах интоксикации развивается токсический гепатит, как правило, протекающий без желтухи, нередко ему сопутствует холецистит.

Установлена определенная фазность в развитии нарушений функции почек: для начальной стадии интоксикации характерно некоторое повышение функциональной активности за счет усиления почечного кровотока и клубочковой фильтрации, на более поздних этапах в связи с развитием токсической нефропатии функция почек значительно нарушается, могут появляться признаки азотемии. В отличие от токсического некронефроза, который характерен для тяжелых острых отравлений ХОС, в частности четыреххлористым углеродом, дихлорэтаном, нефропатии при хронических интоксикациях соединениями этой группы имеют относительно доброкачественное течение и, как правило, не приводят к выраженной азотемической уремии.

На фоне функциональных нарушений центральной нервной системы наблюдаются различные эндокринные нарушения, в том числе наиболее частое угнетение активности коркового вещества надпочечников, гиперфункция щитовидной железы, реже — нарушения функции инсулярного аппарата поджелудочной железы. Для тяжелых форм интоксикации характерна плюригландулярная недостаточность с ведущими гипоталамическими расстройствами, гипергликемией и артериальной гипертензией.

Под влиянием ХОС происходят существенные изменения в крови. К ним относится анемия, которая чаще всего имеет гипохромный характер, однако в отдельных случаях приобретает черты гипопластического процесса, в развитии которого, по-видимому, важную роль играет сенсибилизация организма указанными соединениями. Наряду с этим изменяется количество лейкоцитов: умеренная лейкопения сопровождается относительным лнмфоцитозом, эозинопенией. Снижается также количество тромбоцитов, что нередко сочетается с геморрагическим васкулитом. СОЭ имеет тенденцию к замедлению.

Хронические интоксикации ХОС отличаются затяжным течением и на годы ограничивают трудоспособность.

В диагностике интоксикаций этими соединениями имеет значение определение отдельных пестицидов и их метаболитов в крови и моче. Однако отсутствие параллелизма между степенью выраженности интоксикации и содержанием пестицидов в биосредах снижает диагностическую ценность таких исследований.

Как известно, большая часть воды централизованного водоснабжения в России подвергается дезинфекции с применением хлора или веществ, содержащих хлор . Ввиду того, что свободный хлор относится к числу вредных для здоровья веществ, гигиенические номы (СанПиН - Санитарные Правила и Нормы) строго регламентирует содержание остаточного свободного хлора в питьевой воде централизованного водоснабжения. При этом СанПиН устанавливает не только верхнюю границу допустимого содержания свободного остаточного хлора, но и минимально-допустимую границу. Дело в том, что, что несмотря на обеззараживание на станции водоочистки, готовую "товарную" питьевую воду подстерегает немало опасностей по пути к крану потребителя. Например, свищ в стальной подземной магистрали, сквозь которые не только магистральная вода попадает наружу, но и загрязнения из почвы могут попасть в магистраль. Минимально допустимое содержание остаточного свободного хлора обеспечивает дополнительную дезинфекцию на всем пути воды до крана в случае, если имеет место дополнительный источник загрязнения: т.н. «дезинфицирующее последействие». Этом минимум содержания остаточного свободного хлора определен СанПиН-ом как 0,3 мг/л, а ПДК установлен как 0,5 мг/л. В периоды весеннего половодья и увеличения риска и степени загрязненности вод у источников водоснабжения на станциях водоочистки увеличивается общее количество вводимого хлора исходя из расчета указанных величин содержания остаточного хлора у потребителя, но, разумеется, добиться абсолютной точности не удается, и кратковременно могут наблюдаться повышенные значения содержания остаточного свободного хлора в воде до 1,0, а в редких случаях и до 1,2 мг/л. Такая вода выдает себя не только вкусам, но и запахом. Для справки: при таких значениях содержания хлора в воде запах от струи воды из крана ощущается во всем помещении, а при его содержании в 2 мг/л уже и в соседних помещениях.

До недавнего времени считалось, что хлорирование не оказывает вредного влияния на здоровье человека. Но исследования показали, что около10% хлора, используемого при хлорировании, участвует в образовании побочных продуктов (хлорсодержащих соединений) - галогенсодержащих соединений (ГСС), которые условно разделяются на три группы: высокоприоритетные, относительно приоритетные и низкоприоритетные. К приоритетным ГСС относятся: хлороформ, четырёххлористый углерод, дихлорэтан, трихлорэтан, тетрахлоэтилен; перхлорэтилен, бромоформ, дихлорметан, дихлорэтан, дихдорэтилен, Большую часть ГСС составляют тригалометаны (ТГМ): дихлорбромметан, дибромхлорметан и бромоформ.

Образование тригалометанов обусловлено взаимодействием соединений активного хлора с органическими веществами природного происхождения (фулькокислоты, гуминовые кислоты и др.). На количество и состав образующихся галогенсодержащих углеводородов влияют как концентрация и природа органического соединения (промышленные, сельскохозяйственные, бытовые сточные воды, поверхностный сток населённых мест), так и условия водоподготовки: доза активного хлора, время его контакта с водой, температура, рН, присутствие других галогенов и т.д.

В сумме образующихся при водоподготовке ТГМ хлороформ составляет 70 - 90 %. При этом необходимо отметить, что в исходной воде, поступающей на водоподготовку, содержание хлороформа может быть незначительным и увеличивается только на этапах обработки воды после хлорирования .

Хлороформ является важным растворителем и обезжиривающим агентом. В небольших количествах он применяется как анестезирующее средство, в состав мазей, средств для шестимесячной завивки волос зубных паст и фумигантов и как активный ингредиент и консервант против кашля. В воду поступает главным образом за счёт хлорирования, а также в составе сточных вод предприятий фармацевтической промышленности, производство лаков, красок. На долю хлороформа приходится 90% от образующихся в воде, при её хлорировании, галогенуглеводородов. Так, содержание хлороформа в речной воде (реки Днепр), поступающей на обработку, не превышает 0,87 мкг/л.

После хлорирования концентрация хлороформа увеличивается до 13,5 мкг/л, что в 1,4 -32 раза превышает предельно допустимую концентрцию.

Хлороформ является умеренно токсичным (группа 2Б), но высоко кумулятивным веществом. Хлороформ не обладает мутагенной активностью. Максимальная концентрация хлороформа, не оказывающая влияния на санитарный режим водоёмов, равна 50 мг/л. пороговая концентрация по запаху - 18,03 мг/л.

Хлороформ вызывает профессиональные хронические отравления с преимущественным поражением печени и центральной нервной системы. Метаболизм хлороформа происходит в печени, а значительное депо - в жировой ткани. Хлороформ , по-видимому способен проникать через плацентарный барьер поскольку было найдено, что его концентрации в пуповинной крови выше, чем в крови матерей. Основные метаболиты хлороформа выводились через лёгкие или через почки (в виде неорганических хлоридов). Среди потенциальных опасностей, связанных с воздействием концентраций, наиболее серьёзными являются канцерогенные эффекты, наблюдаемые у экспериментальных животных, и предположение об аналогичных эффектах у людей, подвергающихся воздействию повышенных концентраций тригалометанов в питьевой воде.

При хлорировании есть вероятность образования чрезвычайно токсичных соединений, тоже содержащих хлор, - диоксинов (диоксин в 68 тыс. раз ядовитее цианистого калия). Хлорированная вода обладает высокой степенью токсичности и суммарной мутагенной активностью (СМА) химических загрязнений, что многократно увеличивает риск онкологических заболеваний.

По оценке американских экспертов, хлорсодержащие вещества в питьевой воде косвенно или непосредственно виновны в 20 онкозаболеваниях на 1 млн. жителей. Риск онкозаболеваний в России при максимальном хлорировании воды достигает 470 случаев на 1 млн. жителей. Предполагается, что 20-35% случаев заболевания раком (преимущественно толстой кишки и мочевого пузыря) обусловлены потреблением питьевой воды. По мнению некоторых исследователей, с употреблением загрязнённой воды может быть связано от 30 до 50% случаев злокачественных опухолей. Другие приводят расчёты, в соответствии с которыми потребление речной воды может привести к увеличению онкозаболеваемости на 15%.

Хлорорганические соединения, находящиеся в промышленных отходах, поглощаются частицами вещества и почвой, а в гидросфере - частицами органических и неорганических веществ и осадками.[ ...]

Хлорорганические соединения представляют собой газы, жидкости или твердые вещества со своеобразным запахом.[ ...]

Хлорорганические соединения поглощаются активированным углем. При последующем прокаливании угля на газовой горелке пламя ее окрашивается в зеленый цвет. При этом длительность окрашивания пламени пропорциональна концентрации хлорорга-нических соединений в воздухе.[ ...]

Хлорорганические соединения нашли широкое применение во многих отраслях промышленности в качестве растворителей лаков, красок, жиров, парафина, искусственных смол, в качестве исходного продукта для органического синтеза и для других технологических процессов.[ ...]

Хлорорганическим растворителям присущи следующие ценные качества: способность растворять разнообразные вещества, легко смешиваться с другими органическими растворителями, значительная устойчивость по отношению к огню. Горючесть их уменьшается с увеличением содержания хлора в молекуле. Сырьем для их получения является хлор, а также газы крекинга нефти - этилен и гомологи. Свойства хлорорганических соединений, получение, применение и токсичность описаны Г. С. Петровым, А. Б. Ашкинази, Н. Д. Розенбаумом, Н. В. Лазаревым и др.[ ...]

Хлорорганические соединения, определение в воздухе 82 сл.[ ...]

Хлорорганические соединения с давних пор играют главную роль среди инсектицидов и акарицидов. К ним относятся хорошо известные и важные соединения, такие, как ДДТ, его значительно позже найденный аналог метоксихлор, ГХЦГ, активным компонентом которого является у-ГХЦГ, или линдан (в настоящее время все еще имеет важное значение в защите растений), и соединения диенового ряда. Метил-бромид применяется также как средство борьбы с амбарными вредителями.[ ...]

Хлорорганические соединения - углеводороды, являются наркотиками, некоторые действуют на внутренние органы (печень, почки), а также на нервную систему. Предельно допустимые концентрации некоторых хлорированных соединений даны в табл. 47.[ ...]

Соединения этой группы были первыми средствами, нашедшими широкое применение для борьбы с различными вредителями сельского хозяйства. До последнего времени эти соединения (ДДТ, гексахлоран, гептахлор и др.) были ¡наиболее распространенными. Причина этого заключалось в том, что эти высокоэффективные соединения считались почти нетоксичными. Массовое применение химических веществ в сельском хозяйстве показало, что хлорорганические соединения не являются безвредными средствами. В настоящее время хлорорганические соединения применяются с большими ограничениями и постепенно вытесняются другими, менее токсичными, пестицидами.[ ...]

Хлорорганические соединения. ДДТ, ГХЦГ, полихлорпинен, алд-рин, эфирсульфонат и другие хлорорганические соединения - пестициды, давно нашедшие широкое применение в сельскохозяйственном производстве. Они используются в борьбе с вредителями зерновых, зернобобовых, технических культур, виноградников, овощных и полевых культур, в лесном хозяйстве, ветеринарии и даже в медицинской практике. Отличительная их особенность - стойкость к воздействию различных факторов внешней среды (температура, солнечная радиация, влага и др.). Так, ДДТ выдерживает нагревание до 115-120°С в течение 15 ч и почти не разрушается при кулинарной обработке. Этот препарат, обладая высокими кумулятивными свойствами, постепенно накапливается в окружающей среде (вода, почва, пищевые продукты). Его находили в почве через 8-12 лет после применения.[ ...]

Хлорорганические соединения не мешают определению, а спирты с таким же временем удерживания - мешают.[ ...]

Хлорорганические соединения обладают наркотическим и обще-■оксическим действием.[ ...]

Все эти хлорорганические соединения, обнаруживаемые не только во внутренних морях, но и в океанах до глубины 5000 м, уже при концентрациях порядка 1 нг/л на 50-60 % ингибируют фотосинтез фитопланктона, т. е. примерно вдвое снижают его способность ассимилировать С02. Кроме того, персистентные хлорорганические соединения склонны к биоаккумулированию и биомагнификации - накоплению в высших звеньях трофической цепи до уровней токсического воздействия. В результате многие виды (например, орлан-белохвост, балтийский тюлень) оказались на грани исчезновения, а экосистемы, в которые они входят, в значительной степени нарушены.[ ...]

Заметим, что хлорорганические соединения используют в производстве красителей, для обезжиривания металлов, в качестве растворителей при химической чистке одежды, в процессах экстракции на предприятиях пищевой промышленности. Многие из этих процессов протекают при повышенной температуре, что сопряжено с риском образования диоксинов Так, значительные количества ПХДД были найдены в дистиллятах три-хлорэтилена, применяемого на текстильных фабриках для чистки тканей .[ ...]

Определение хлорорганических соединений методом сжигания в приборе НИИ гигиены им. Ф. Ф. Эрисмана.[ ...]

Можно сжигать хлорорганические соединения в фарфоровой или кварцевой трубке с платиновой спиралью при 850- 900° с последующим поглощением продуктов сжигания и определением в них иона хлора (поглощение мышьяковистой кислотой, осаждение АдЫОз и нефелометрическое определение). Сжигание производят также и в стеклянных колонках с накаленной платиновой проволокой.[ ...]

Инсектициды на основе хлорорганических соединений проникают в организм человека через пищеварительный тракт или кожу, если они применялись в растворенном виде. При этом мембраны нервных клеток располагаются так, что сохраняется проницаемость для осмотического переноса потока ионов Ка +. Нарушенный действием пестицидов потенциал покоя после возбуждения либо совсем не возвращается к исходному значению, либо снижается частично. Таким образом, хлорорганические соединения изменяют возбудимость нервных клеток. Сначала при этом повреждаются моторные нервные пути, а затем при более высоких концентрациях и сенсорные нейроны. У человека воздействие пестицидов наблюдается только при попадании в организм значительных количеств пестицидов, следовые количества не оказывают заметного действия. Однако надо относиться с осторожностью к попаданию в организм даже следовых количеств хлорорганических соединений, так как они могут накапливаться и вступать во взаимодействие с другими чужеродными веществами.[ ...]

Прибор для определения хлорорганических соединений (рис. 14). Прибор состоит из двух частей - очистительной и аналитической. Очистительная система состоит из двух поглотительных приборов, предназначенных для очистки воздуха от хлора и хлористого водорода. Один из поглотительных приборов содержит 5% раствор едкой щелочи, другой - 0,01% раствор мышьяковистой кислоты. Аналитическая система состоит из двух стеклянных колонок для сжигания, в которые впаяны платиновые спирали длиной 7 см, сечением 0,3 мм и микропоглотителей. Микропоглотитель представляет собой стеклянную трубку длиной 70 мм и диаметром 7-8 мм с суженным концом и шлифом в верхней части, в которую плотно вставлена стеклянная спираль в 20 витков. Трубка со спиралью другим концом упирается в дно пробирки длиной 40 мм и диаметром 12 мм. Для отбора проб воздуха применяются газовые пипетки на 0,5-1 л. Уравнительные склянки емкостью 1 л служат для вытеснения из пипеток анализируемого воздуха.[ ...]

Наряду с индивидуальными хлорорганическими соединениями проводилось исследование способности к биохимическому окислению дихлорфенольных сточных вод от производства 2,4-Д, отработанной серной кислоты от производства монохлоруксусной кислоты и общего стока химзавода.[ ...]

Другое характерное свойство хлорорганической группы веществ - способность накапливаться в тканях и жире животных. Большинство препаратов этой группы относится к среднетоксичным соединениям. Только некоторые из них (алдрин, дилдрин) принадлежат к сильнодействующим и очень опасным по своей летучести веществам. Хлорорганические соединения могут вызывать острые или хронические отравления с поражением печени, центральной и периферической нервной системы и других жизненно важных органов и систем.[ ...]

Обесцвечивания и снижения содержания хлорорганических соединении в сточных водах целлюлозно-бумажных производств достигают путем их обработки грибами - белой плесенью. Процесс очистки включает разделение сточных вод ультрафильтрацией с последующей обработкой фильрата грибами с целью обеззараживания и сжиганием выделенных высокомолекулярных соединений (концентрата). Эффективность очистки в течение короткого времени обработки превышает в несколько раз традиционные методы очистки. Считают, что в ближайшем будущем этот процесс найдет промышленное применение.[ ...]

Среди пестицидов наибольшую опасность представляют стойкие хлорорганические соединения (ДДТ, ГХБ, ГХЦГ), которые могут сохраняться в почвах в течение многих лет и даже малые их концентрации в результате биологического накопления могут стать опасными для жизни организмов. Но и в ничтожных концентрациях пестициды подавляют иммунную систему организма, а в более высоких концентрациях обладают выраженными мутагенными и канцерогенными свойствами. Попадая в организм человека, пестициды могут вызвать не только быстрый рост злокачественных новообразований, но и поражать организм генетически, что может представлять серьезную опасность для здоровья будущих поколений. Вот почему применение наиболее опасного из них - ДДТ в нашей стране и в ряде других стран запрещено.[ ...]

Предельно допустимые концентрации установлены для отдель-1ых хлорорганических соединений в зависимости от степени их ток-ичности.[ ...]

Ежегодное потребление хлора в России достигает 2 млн т. Используется хлор в производстве хлорорганических соединений (винилхлорида, хлоропренового каучука, дихлорэтана, хлорбензола и др.). В большинстве случаев применяется для отбеливания тканей и бумажной массы, обеззараживания питьевой воды, как дезинфицирующее средство и в других отраслях промышленности. Хранят и перевозят его в стальных баллонах, контейнерах и железнодорожных цистернах под давлением.[ ...]

Наряду с контролем промышленных предприятий необходимо контролировать содержание стойких хлорорганических соединений (ПХБ, ДДТ, ГХЦГ и др.) в агроландшафтах Последние являются одним из основных вторичных источников загрязнения окружающей среды этими веществами Накопление ХОС в агроландшафтах явилось результатом масштабного и длительного применения в сельском хозяйстве ХОП Так, обследование сельскохозяйственных территорий Прикубанской низменности показало, что прессинг на почвенный покров остаточных количеств ХОП соизмерим с нагрузкой промышленных загрязнителей. Особого внимания заслуживают повышенные содержания ПХБ и остатков ДДТ в почвах под отдельными сельскохозяйственными культурами и многолетними насаждениями, а также поля испарений, куда сбрасываются коммунальные и промышленные сточные воды, содержащие ХОС, Г1АУ, канцерогенные металлы. После испарения воды на них образуются грязные слои почвы, легко сдуваемые в виде пылевой пудры даже небольшим ветром. В таких условиях частицы пыли могут попадать в легкие и пищевод проживающих в данной местности людей и способствовать возникновению раковых заболеваний.[ ...]

Инсектициды применяют главным образом для обработки посевов зерновых и бобовых культур. Среди инсектицидов большую роль играют хлорорганические соединения - ДДТ, гексахлорциклогексан, выпуск которых основан на отечественной хлорной промышленности . Изменение потребления пестицидов приведено в табл. 162.[ ...]

Природный осадок и поверхностная пленка являются зонами концентрирования загрязняющих воду веществ. На дно оседают нерастворимые в воде соединения, а сам осадок является хорошим сорбентом для многих веществ. Например, нерастворимые в воде хлорорганические соединения оседают на дне и сохраняются там длительное время. Предполагают, что вода является хранилищем устойчивых пестицидов. Донные осадки могут обладать окислительно-восстановительными свойствами и биологической активностью, могут катализировать некоторые реакции.[ ...]

В Приложении 3 приведены результаты опытов по огневому обезвреживанию в циклонных реакторах некоторых видов сточных вод, кубовых остатков и водных растворов, содержащих хлорорганические соединения. В этих опытах в отходящих дымовых газах содержались НС1 и СЬ. По данным , органические соединения хлора в отходящих газах присутствуют при наличии в них оксида углерода и несгоревших углеводородов. В рассматриваемых опытах в дымовых газах обнаружены лишь следы СО, а углеводороды отсутствовали. Это дает основание считать, что содержание органического хлора в отходящих газах должно быть невысоким. В опыте на сточной воде производства дианата, проведенном при пониженных температурах (/0,г= 1000 °С), в отходящих газах содержалось 80- 160 мг/м3 органического хлора. Для полного окисления хлорорганических примесей температуру отходящих газов целесообразно поддерживать на уровне 1100°С при коэффициенте расхода воздуха 1,05-1,1.[ ...]

Диоксины - высокотоксичные вещества сложной химической структуры, ксенобиотики, имеющие техногенное происхождение, связанное главным образом с производством и использованием хлорорганических соединений и их утилизацией.[ ...]

Хлоргаз по выходе из цеха электролиза проходит сушку, где он освобождается от водяных паров и транспортируется затем по трубопроводу на производство хлорной извести, жидкого хлора, хлорорганических соединений и т. п.[ ...]

При промышленном получении хлора и щелочей методом электролиза хлоридов, переработке руд титана, ниобия, тантала и других металлов методом хлорирующего обжига, получения хлористоводородной кислоты и многих хлорорганических соединений в атмосферу выбрасываются газы, содержащие хлор, хлороводород и другие соединения хлора. В последнее время источниками поступления НС1 в окружающую среду стали печи сжигания хлорсодержащих промышленных отходов и бытового мусора, содержащего полимерные материалы.[ ...]

Большое экономическое значение для нашей страны и мирового сельского хозяйства имеет борьба с колорадским жуком. До конца 50-х гг. в Европе и США против колорадского жука в основном применялся ДДТ. Запрет на ряд хлорорганических соединений привел к более интенсивному использованию карбаматных и фос-форорганических препаратов. В 1976 г. появились данные о том, что в ряде штатов QIIÍA применение карбофурана увеличивало численность колорадского жука.[ ...]

Экологическая ситуация в регионе за последние годы существенно изменилась. Так, на примере АО "Каустик", валовой выброс загрязняющих веществ снижен к 1999 г. (по сравнению с 1992 г.) на 4320,797 т (59,63%). В том числе снижены выбросы по ртути (на 57,6%), по хлорвинилу (на 88,5%), по сумме хлорорганических соединений без учета хлорвинила (на 77,60%), по аммиаку (на 17,10%). Поэтому необходим постоянный мониторинг состояния различных типов экосистем и выбор системы методов контроля и оценки окружающей среды, применительно к особенностям конкретного региона.[ ...]

Более 100 лет метод обеззараживания воды хлором является в России наиболее распространенным способом борьбы с загрязнением. В последние годы было установлено, что хлорирование воды представляет серьезную угрозу для здоровья людей, поскольку попутно образуются крайне вредные хлорорганические соединения и диоксины. Добиться снижения концентрации указанных веществ в питьевой воде можно путем замены хлорирования на озонирование или обработку УФ - лучами. Эти прогрессивные методы широко внедряются на станциях водоподготовки многих стран Западной Европы и США. В нашей стране, к сожалению, из-за экономических трудностей применение экологически эффективных технологий осуществляется крайне медленно.[ ...]

Чем устойчивее и токсичнее пестициды, тем серьезнее их негативное воздействие на живую природу и человека. При этом устойчивость к факторам окружающей среды (солнечный свет, кислород, микробиологические разложения и т. д., способность ядохимикатов сохраняться длительное время) в большей мере определяет их опасность. Пестициды на основе хлорорганических, фосфорорганических и карбаматных соединений значительно отличаются по своей стойкости. ДДТ - типичное хлорорганическое соединение - способен более 50 лет циркулировать в биосфере. Более того, продукты его разложения (например, ДДЕ) - опасные и стойкие вещества, порой они более токсичны, чем исходное вещество.[ ...]

Реальную картину присутствия остаточных количеств химических средств,защиты растений в наиболее важной для человека части окружающей среды - пище можно получить только с помощью контрольных анализов. Все упомянутые ядохимикаты представляют собой хлорорганические соединения, устойчивость которых общеизвестна.[ ...]

Поскольку скорость интенсивности антропогенного воздействия на природу возрастает экспоненциально, через несколько десятилетий оно будет полностью определять изменение состава атмосферы, подавляя указанные выше природные факторы. Модельные исследования показали, что уже в период 21-го 11-летнего солнечного цикла (1975-1986 гг.) в изменения содержания озона и фотохимически с ним связанных соединений азота в средней и верхней стратосфере почти одинаковый вклад вносили колебания УФ излучения Солнца, вызванные изменениями активности Солнца и ростом содержания активного хлора, разрушающего озон в этих слоях атмосферы. Последний фактор является результатом роста антропогенного выброса в атмосферу хлорорганических соединений, прежде всего ХФУ-11 и -12, который был весьма интенсивен в 70-е годы и составлял около 10 % в год, 80-е годы - 5% в год . Очевидно, в текущем 22-м (1986-1997 гг.) и особенно в следующем 23-м солнечных циклах этот антропогенный фактор будет определять изменения состава не только нижней, но и глобальной верхней стратосферы. Поэтому при оценке наиболее важных долговременных изменений содержания озона и других радиационно-активных газов в атмосфере, определяющих их воздействие на биосферу и климат, следует учитывать лишь изменения антропогенных факторов, формирующие эволюцию состава атмосферы. В последнее время были составлены и опубликованы несколько сценариев ожидаемых антропогенных выбросов С02 и других МГ в атмосферу и их содержания в ее разных частях.[ ...]

В настоящее время антропогенная нагрузка на природные водоемы, являющиеся источниками для получения питьевой воды, неуклонно возрастает. Наиболее опасными для человека загрязнителями являются различные патогенные микроорганизмы. Поэтому в технологии водоподготовки важнейшая роль принадлежит процессу обеззараживания и, в частности, хлорированию. Однако использование хлора приводит к образованию хлорорганических соединений, доминирующее значение среди которых принадлежит трагалогенме-танам (ТГМ). Последние относятся к токсичным органическим соединениям и отнесены ко II классу опасности. Поэтому знание общих закономерностей образования ТГМ необходимо для обоснованного управления технологией водоподготовки с целью снижения количества ТГМ в питьевой воде.[ ...]

Многообразие экологических требований и сложность производственных систем создали в последнее десятилетие своеобразную ситуацию, когда вероятность привлечения фирм и компаний к различным формам ответственности за непреднамеренные экологические нарушения резко возросла. Любопытным в этой связи представляется судебный процесс, возбужденный "Гринпис", в отношении одной английской химической компании, которая загрязняла Ирландское море и реку Темзу незаконными сбросами сточных вод рядом своих предприятий во Флитвуде и Уилтоне. Анализ проб сточных вод, отобранных "Гринпис" у 34 выпускных отверстий в сентябре 1992 г., показал содержание в них 100 хлорорганических соединений и других химических веществ, сбрасываемых в водную среду без разрешения. Ассоциация химической промышленности опровергает заявление "Гринпис", ссылаясь на строгий контроль как самой деятельности предприятий, так и их сбросов, Национальным речным управлением. Ситуация оказалась весьма странной: наличие многочисленных незаконных сбросов при строгом внешнем контроле. Упомянутый судебный процесс по мнению английских экспертов в области природоохранного права свидетельствует о необходимости самоконтроля предприятий с помощью так называемого экологического аудирования .[ ...]

Не вдаваясь в детали, перечислю основные результаты этих работ В статье приведены следующие данные. Установлено, что на протяжении 1990-1999 гг. содержание в воде крезолов, хлороформа и фенолов было значительным и приближалось к ПДК, а временами превосходило соответствующий норматив.

Физико-химические свойства хлорорганических соединений. Хлорорганические соединения, используемые в качестве инсек­тицидов, приобретают особое и самостоятельное значение в сельском хозяйстве.

Эта группа соединений с определенным назначением имеет своим прототипом широко известное сейчас вещество - ДДТ.

По своему строению хлорорганические соединения, представ­ляющие токсикологический интерес, можно разделить на 2 группы - производные алифатического ряда (хлороформ, хлор­пикрин, четыреххлористый углерод, ДДТ, ДДД и др.) и произ­водные ароматического ряда (хлорбензолы, хлорфенолы, алдрин и др.).

В настоящее время синтезировано огромное количество сое­динений, содержащих хлор, которые в основном обязаны своей активностью именно этому элементу. К их числу следует отнести алдрин, диэлдрин и др. Содержание хлора в хлорированных углеводородах составляет в среднем от 33 до 67%.

Основные представители данной группы хлорорганических соединений-инсектицидов, иллюстрируются в табл. 5.

Группа хлорорганических инсектицидов, приведенная в таб­лице, далеко не исчерпывает всего наличия этих соединений.

Но, ограничиваясь лишь 12 основными представителями (с вклю­чением сюда и различных изомеров или подобных соединений), мы можем по структуре этих веществ сделать некоторые обобщения об их токсичности.

Из фумигантов (дихлорэтан, хлорпикрин и парадихлорбен-зол) особенной токсичностью отличается хлорпикрин, в период первой мировой войны являвшийся представителем БОВ удуша­ющего и слезоточивого действия. Остальные 9 представителей являются собственно инсектицидами, причем в основном кон­тактными. По химическому строению это или производные бен­зола (гексахлоран, хлориндан), нафталина (алдрин, диэлдрин и их изомеры), или соединения смешанного характера, но в которые входят компоненты ароматического ряда (ДДТ, ДДД, пертан, хлортен, метоксихлор).

Все вещества этой группы вне зависимости от своего физиче­ского состояния (жидкости, твердые тела) плохо растворяются в воде, обладают более или менее специфическим запахом и ис­пользуются или для фумигации (в этом случае они обладают высокой летучестью), или в качестве контактных инсектицидов. Формами их применения служат дусты для опыления и эмульсии для опрыскивания.

Промышленное производство, равно как и использование в сельском хозяйстве строго регламентированы соответствую­щими инструкциями, предупреждающими возможность отравле­ния людей и отчасти животных. В отношении последних еще очень многие вопросы не могут считаться окончательно решенными.

Токсикология. Токсичность хлорорганических соединений из группы фумигантов и инсектицидов довольно различна. Она достаточно хорошо определена и изучена на лабораторных жи­вотных, но в отношении сельскохозяйственных животных и птиц сведения о токсичности указанной группы соединений недоста­точны и порой противоречивы. Однако массовые случаи инто­ксикаций животных неоднократно описаны в ветеринарной ли­тературе всех стран, где внедрены в сельское хозяйство данные препараты.

Вполне естественно высказать некоторые общие положения о характеристике токсических свойств хлорорганических соедине­ний на основании их физико-химических свойств.

Из физических свойств прежде всего имеют значение лету­честь веществ и их растворимость. Летучие вещества, исполь­зуемые в качестве фумигантов, представляют опасность при вды­хании воздуха, содержащего примесь дихлорэтана, хлорпикрина и хлорбензола. Растворимость в жирах и маслах при резорб­ции через пищеварительный тракт обусловливает липоидотроп-

ное влияние в организме, проявляющееся прежде всего пора­жением нервной системы.

Химические свойства веществ данной группы определяются наличием и количеством хлора в том или ином соединении. Имеет также значение и степень прочности связи хлора в дан­ном соединении. В отношении насекомых эти соединения чаще всего проявляют несколько более замедленное влияние, чем инсектициды растительного происхождения (например, пирет­рум и др). Через неповрежденную кожу животных эти вещества могут резорбироваться в виде масляных растворов и эмульсий. Способность проникать через кутикулу насекомых в большей степени, чем1 через кожу животных, и является основанием боль­шей токсичности этих веществ как инсектицидов.

После того, как вещество поступило в организм, оно начи­нает насыщать жировую ткань. Концентрации этого накопле­ния бывают различными в зависимости от того или иного сое­динения. В частности, метоксихлор вообще почти не накапли­вается в жировой ткани, тогда как ДДТ и многие другие соеди­нения могут оказаться в значительном количестве в этой ткани при том условии, если содержатся в кормах в очень малых коли­чествах (около 1 мг на 1 кг корма).

Накапливаясь в жировой ткани, эти вещества очень долгое время сохраняются в ней (гексахлоран, например, до трех и более месяцев) после исключения этих поступлений, что сооб­щает как жиру, так отчасти и мясу (с прослойками жира) специфический привкус. В мозговой и нервной ткани кумуляции этих веществ, как

правило, не наблюдается, тогда как в же­лезах внутренней секреции (в надпочечниках) они накапли­ваются в тех же количествах, что и в жировой ткани.

Всасывание хлорорганических производных из кишечника происходит в сравнительно слабой степени. Большая часть при поступлении их в организм этим путем выводится с каловыми массами. Однако не у всех теплокровных этот путь выведения является главным. У кролика значительная часть ДДТ при поступлении в организм через пищеварительный тракт выде­ляется с мочой в виде ацетилированного соединения. Незначи­тельные количества ДДТ при этом обнаруживаются и в желчи. У кошек, наоборот, выделение ДДТ почти не происходит, а у крыс ДДТ превращается в ацетилированную форму очень слабо.

Значительное количество некоторых хлорорганических сое­динений выделяется с молокой, в особенности ДДТ, затем гамма-изомер ГХЦГ, хлориндан и диэлдрин. Метоксихлор е мюлоке практически отсутствует. Установлено, что при таких ничтожных количествах ДДТ в сене, как 7-8 мг на 1 кг корма

в молоке коров, поедающих его, количество препарата дости­гает 3 мг на 1 кг молока, а так как это вещество растворяется в жировой части молока, то масло может содержать до 60- 70 мг на 1кг продукта, что представляет определенную опас­ность для телят (в подсосный период), а также для людей.

Токсикодинамика хлорорганических соединений как "в от­ношении насекомых, так и млекопитающих изучена недоста­точно. Предположений по этому поводу в литературе опубли­ковано немало. В одних случаях связывали токсичность данных соединений с количеством соляной кислоты, образующейся при разрушении и детоксикации этих веществ в организме, в дру­гих - высказывалось наиболее вероятное предположение о том, что токсическое влияние обусловлено нарушением как самимя веществами, так и продуктами их распада, энзимных процес­сов. Последнее имеет основание потому, что алдрин и диэлдрин (равно как и их изомеры) в своем влиянии имеют много сход­ного с фосфорорганическими соединениями.

Касаясь каждого из приведенных 12 веществ в характери­стике их токсичности к сельскохозяйственным животным, сле­дует отметить вещества с относительно низкой токсичностью: ДДД, метоксихлор и пертан. Остальные соединения более ток­сичны и могут вызывать как острые, так и хронические отрав­ления животных. Хронические интоксикации чаще всего наблю­даются от таких соединений, которые медленно удаляются из жировой ткани организм1а (ДДТ и гексахлоран). Метоксихлор сравнительно быстро разрушается в организме, и в силу этого хронические метоксихлорные интоксикации исключаются. Жи­вотные, имеющие меньшее отложение жира, более чувстви­тельны, чем жирные животные, у которых инсектициды откла­дываются в жировых депо и делаются вследствие этого для организма относительно инертными. Это имеет место и у исто­щенных животных одного и того же вида, в частности при влия­нии ДДТ. Более чувствительны животные в молодом возрасте. Особенно это касается телят 1-2-недельного возраста, отрав­ляющихся через молоко при наличии в корме коров инсектици­дов.

Токсичность инсектицидов, содержащих хлор, во многом за­висит и от того, в какой форме вещество поступает в организм. Так, с растительным М1аслом вещество оказывается более ток­сичным, чем с минеральным или в виде водной эмульсии. Наи­меньшей токсичностью обладают дусты. ДДТ, в частности, в 10 раз менее токсичен в водных эмульсиях, чем в масляном растворе.

Токсические дозы препаратов группы хлорорганических ин­сектицидов в среднем для лабораторных животных выражаются

в количествах на 1 кг веса животного: ДДТ около 200 мг, ДДД - 1 г, метоксихлор - 6 г, пертан - 8 г. Приведенные дозы говорят о различной токсичности этих четырех соединений.

Однако сельскохозяйственные животные более устойчивы к наиболее токсичному из них-ДДТ. Симптомы отравления у овец наступают от 500 мг на 1 кг. веса животного, и даже ко­личества до 2 г на 1кг веса не всегда вызывают смертельный исход. Козы еще более устойчивы, чем овцы. Примерно такие же дозы ДДТ вызывают отравление и у взрослого крупного ро­гатого скота. Однако у телят 1-2-недельного возраста дозы сни­жаются до 250л1гна 1 кг веса. Гарнер приводит следующее рас­положение животных по-чувствительности к ДДТ: мышь, кошка, собака, кролик, морская свинка, обезьяна, свинья, лошадь, крупный рогатый скот, овца и коза. Более чувствительна к ДДТ рыба, а птицы, наоборот, более устойчивы.

Овцы, козы, коровы и лошади переносят без заметных при­знаков отравления дозы ДДТ в пределах 100-200 мг на 1 кг веса, поступающие в течение нескольких дней. Естественно, что остальные 3 препарата (ДДД, метоксихлор и пертан) могут вызвать отравления у сельскохозяйственных животных при длительном поступлении с кормом веществ и в значительно больших количествах, чем ДДТ.

Токсичность гексахлорана изменяется от изомерии этого соединения. Наиболее токсичным из изомеров является гамма-изомер. Средняя однократная смертельная доза гексахлорана (с содержанием1 до 12% гамма-изомера) составляет примерно 1 г на 1 кг веса. Но у разных животных устойчивость к этому ядохимикату неодинакова. Так, описаны случаи, когда собаки погибали от 20-40 мг на 1 кг веса, а лошади -от 50 г по­рошка, содержащего 21% гексахлорана. Телята особенно чув­ствительны к гексахлорану, и минимальная токсическая доза у них составляет около 5 мг на 1 кг их веса, тогда как для взрос­лого рогатого скота (коров, овец) она в 5 раз выше. Вообще молодые животные всех видов более чувствительны, чем взрос­лые. Однако телята все же менее устойчивы, чем ягнята и по­росята. У истощенных животных также наблюдается повышен­ная чувствительность к гексахлорану. У птиц после пребывания в течение 0,5-2 часов под воздействием концентрации 0,002% гамма-изомера гексахлорана в воздухе проявлялись симптомы отравления, а удвоенная концентрация вызывала их гибель (Каревич и Маршан, 1957).

Хлорорганические соединения, являющиеся производными нафталина (алдрин, диэлдрин и их изомеры), в отношении ток­сичности представляют собой особую группу, значительно отли­чающуюся от предыдущих препаратов.

Наличие в диете алдрина и диэлдрина в количестве до 5мг на 1 кг корма, как правило, не вызывает симптомов интоксика­ции. Увеличение до 25 мг на 1 кг корма замедляет рост у мо­лодняка, а свыше 100 мг на 1 кг корма вызывает признаки от­равления.

Хлориндан наименее токсичный препарат, однако его ток­сичность во многом зависит от применяемых форм препарата. Средние токсические дозы для овец составляют 200-250 мг на 1 кг веса, а для телят-от 25 мг на 1 кг веса. Однако при мно­гократных обработках овец 1-2-процентными эмульсиями и дустами у них очень часто имело место хроническое отравление. Наблюдались отравления и у птиц.

Другие препараты этой группы инсектицидов по токсичности от вышеизложенных не отличаются. Полихлоркамфен (токса-фен), отличающийся низкой токсичностью, вызывает токсиче­ские симптомы у овец. Его токсические дозы равны у овец 25 мг на 1 кг веса, а у коз 50 мг на 1кг веса. Однако даже такие высокие дозы, как 250 мг на 1 кг веса, не всегда вызы­вают смертельный исход. Телята и к полихлоркамфену особен­но чувствительны, и у них токсические симптомы могут появ­ляться от 5 мг на 1кг веса. Цыплята относительно устойчивы к полихлоркамфену. У собак - хронические отравления не наблюдались даже в тех случаях, когда им давали полихлор­камфен в течение трех месяцев по 4 мг на 1 кг веса. Применение эмульсий и суспензий этого препарата 1,5-процентной концент­рации для купания и обмывания лошадей, крупного рогатого скота, овец и коз 8 раз с 4-дневным1 промежутком не вызывало симптомов отравления. При обработке телят 0,75 и 1-процент­ными растворами полихлоркамфена могут быть интоксикации,

но для уничтожения насекомых бывает вполне достаточным использование и более низких концентраций - 0,25-0,5-про­центных (Гарнер).

Отравления хлорорганическими соединениями. Клинические признаки. Острые отравления прежде всего наблюдаются при использовании наиболее токсичных хлорорганических соедине­ний (ГХЦГ, алдрин, диэлдрин и др.). В основном клинические проявления выражаются в возбуждении центральной нервной системы, однако в этом случае отличаются значительным разно­образием.

Естественно, что и возникновение симптомов отмечается че­рез различное время после поступления ядовитого вещества в организм). В одних случаях появление признаков отмечают в течение первого часа, но их обнаружение возможно спустя сутки и больше. Характер реакции организма может проявляться по­степенным ухудшением общего состояния, но может и сразу стать очень тяжелым.

Животные прежде всего становятся пугливыми и проявляют повышенную чувствительность, а иногда и агрессивность. Затем отмечается поражение глаз (блефароспазм), подергивания ли­цевых мышц, судорожные сокращения мускулатуры шеи, перед­ней и задней части туловища. Мышечные спазмы повторяются через более или менее определенные интервалы или выража­ются отдельными приступами различной силы. Повышается сек­реция слюны, усиливаются жевательные движения, появляется пена, иногда в значительных количествах.

При более интенсивном влиянии ядовитого вещества живот­ное бывает сильно возбужденным, с признаком буйства и по­терей координации движений. Оно натыкается на посторонние предметы, спотыкается, делает круговые движения и т. п. Не­редко животное в этом случае принимает ненормальные позы, опуская низко, к передним конечностям голову.

Усиливаясь, такие разнообразные симптомы доходят до кло-нических судорог, сопровождающихся плавательными движе­ниями, скрежетанием зубов, стонами или мычанием. Приступы судорог повторяются иногда через регулярные интервалы или бывают нерегулярными, но, начавшись, каждый из них может закончиться смертью животного.

У некоторых животных наблюдается стремление лизать собственную кожу.

Иногда появление симптомов интоксикации наступает вне­запно. Животное резко вскакивает и падает в приступе судорог без каких-либо предварительных симптомов заболевания.

Нередко отравившиеся животные находятся в коматозном состоянии в течение нескольких часов до наступления смерти.

Если приступы судорог продолжаются значительное время, то быстро повышается температура тела, появляется одышка, и смерть наступает в основном от недостаточности сердечной дея­тельности, связанной с нарушением дыхания, что характери­зуется сильным цианозом видимых слизистых оболочек.

Общая чувствительность к раздражению в период появления симптомов отравления у животных бывает значительно повы­шенной (особенно при отравлении ароматическими хлорсодер-жащими соединениями). Наоборот, при других случаях отме­чается сильная депрессия, сонное состояние, полное отсутствие аппетита, постепенное истощение, нежелание передвигаться. Эти симптомы могут оставаться до наступления смерти или сме­няться сильным внезапным возбуждением.

Тяжесть обнаруживаемых симптомов при данных отравле­ниях не всегда отражает общее состояние организма в отноше­нии прогноза. В зарубежной литературе (Раделев и др.) приво­дятся случаи, когда животные погибали после первого и кратко­временного приступа судорог и, наоборот, переживали много­кратные приступы такой же силы.

При отравлении менее активными хлорорганическими соеди­нениями (ДДТ, ДДД и метоксихлор) животные вначале прояв­ляют беспокойство и становятся более возбужденными и высо­кочувствительными, чем животные, отравившиеся препаратами более высокой токсичности. Подергивание лицевых мышц (осо­бенно век) отмечается вскоре после отравления. Затем этот тремор распространяется и на другие участки мускулатуры, де­лаясь более сильным, и сопровождается резко возрастающей одышкой. После таких тяжелых конвульсивных приступов жи­вотные находятся в стадии депрессии и оцепенения.

При отравлениях средней степени тремор или бывает мало­заметным, или вообще отсутствует. У животных наблюдается связанность движений. Рефлексы бывают пониженными. Быстро снижается упитанность.

Симптомы отравления чаще всего проявляются в течение 5-6 часов после поступления ядовитого вещества. Но это во многом зависит от поступившего соединения и от чувствитель­ности к нему данного животного. Симптомы отравления от ДДТ у овец и коз могут не обнаруживаться в течение от 12 до 24 ча­сов, в продолжение недели они иногда не проявляются у крупно­го рогатого скота. Смерть от ГХЦГ у собак наступает в течение первых двух суток, а иногда через несколько дней. У лабора­торных животных (крыс, кроликов и собак) смерть при отравле­нии алдрином наступает в течение 24 часов, однако наблюда­лись случаи, когда после однократной дозы животное погибало лишь на 8-е сутки. При обработке овец диэлдрином смерть на"ступала спустя 10 суток, но она может быть и раньше. Диэл-дрин, по литературным данным, имеет особенно продолжитель­ный «скрытый» период своего влияния (до 14 суток) после об­работки животных.

Отравление хлоринданом, заканчивающееся смертью, иногда может себя не обнаруживать клинически в течение двух недель после однократной дозы. Токсикоз полихлоркамфеном после ра­зовой дозы, наоборот, проявляется бурной реакцией со стороны организма, и животные с признаками типичного отравления в те­чение 24-36 часов полностью выздоравливают. Появление та­кой замедленной картины отравления хлоринданом, приводя­щего в некоторых случаях к смерти, говорит о том, что эти инсектициды могут сохраняться и медленно выделяться из организма, представляя собой кумулятивные яды.

Клинические признаки при хроническом отравлении доволь­но сходны с симптомами острой интоксикации хлорорганиче­скими инсектицидами, при которой также наблюдаются мышеч­ные подергивания на голове, шее и других частях туловища. Изредка могут иметь место и судороги разной силы. Отмечается общая депрессия, постепенно усиливающаяся. Смертельные слу­чаи при хронических отравлениях наблюдались редко.

Диагноз. Диагностируется отравление хлорорганическими инсектицидами на основании анамнеза, при сборе которого ис­следуется вопрос о контакте животных с указанными ядохими­катами. В сомнительных случаях и особенно при хроническом отравлении в постановке диагноза может иметь значение иссле­дование молока у лактирующих животных, поскольку многие из веществ этой группы выделяются с молоком. Для этой цели используют биологическую пробу на мухах, с помощью которых можно установить наличие очень малых количеств инсектици­дов.

Прогноз. При острых отравлениях и наиболее сильнодейст­вующими инсектицидами прогноз неблагоприятный. При хрони­ческих отравлениях и при своевременном установлении диагноза прогноз благоприятный.

Лечение. В острых случаях отравлений у животных лечеб­ные мероприятия должны быть направлены на устранение судо­рог с помощью веществ, угнетающих и успокаивающих цент­ральную нервную систему. Наиболее пригодными для этой цели являются барбитураты (пентотал натрия). Однако не всегда и не у всех видов животных удается применением барбитуратов снять приступы судорог. Все хлорсодержащие препараты при острых отравлениях имеют ту особенность, .что, как и при отрав­лении газообразным хлором, наиболее опасным для жизни

периодом являются первые сутки после поступления яда. Если животное переживет 24-48 часов, то в дальнейшем опасность его гибели почти исключается.

Желательно освободить желудочно-кишечный тракт от со­держимого, но только применением солевых слабительных, а не масел. Последние, способствуя растворению и всасыванию хлор-содержащих соединений, ускоряют гибель животных. Если же отравление происходит при всасывании веществ через кожу, не­обходимо удалить эти вещества с шерсти и предотвратить тем самым дальнейшее поступление их в организм.

Отравление крупных животных этими инсектицидами мало­вероятно, но оно может иметь место. В зарубежной литературе рекомендуется в таких случаях предпочитать применению бар-битуратов интравенозное введение борглюконата кальция и глю­козы. Рекомендуется также использование слабительных из группы антрахинона (истицин) в сочетании с глюкозой - исти-цин из расчета 0,1 г на 1кг веса животного, в водной суспензии (Гарнер). При отравлении собак ДДТ особенно хорошие ре­зультаты дает интравенозное введение 2-3 г борглюконата кальция.

Патологоанатомические изменения. При вскрытии трупов животных, павших от острого отравления хлорорганическими инсектицидами, особо характерных изменений не обнаружива­ется. В тех случаях, когда смерть наступает после значительного повышения температуры тела и вообще бурной реакции орга­низма, могут иметь место набухание слизистых оболочек и блед­ность окраски некоторых органов. Обнаруживаются также не­большие кровоизлияния, особенно под эпикардом и эндокардом. По ходу коронарных сосудов эти кровоизлияния иногда быва­ют значительных размеров. Сердечная мышца левой половины сердца сокращена и бледна. Мышцы правой половины сердца несколько растянутые и дряблые, особенно при длительном те­чении отравления.

Легкие спавшиеся, или имеют очаги эмфиземы и ателектаза. В отдельных случаях, быстро заканчивающихся (в течение пер­вых суток) смертью, имеет место выраженный отек легких с на­личием значительного количества пенистой жидкости в бронхах и трахее. Под слизистой оболочкой последних, а также и под плеврой имеются кровоизлияния.

При пероральном поступлении хлорорганических ядовитых веществ отмечается гастроэнтерит в различной степени. Голов­ной и спинной мозг с признаками застойной гиперемии.

При хронических отравлениях отмечаются дегенеративные изменения в печени и почках.

Гистологические изменения: застойные явления, мутное на­бухание и кровоизлияния в органах, жировая дегенерация, осо­бенно в печени и почках. В печени обнаруживают некротические очажки в центре долек, но цирротических изменений не наблю­дается.

При отравлении хлориданом находят значительные пораже­ния сосудов в виде множества петехий и экхимоз в кишечнике, миокарде и паренхиматозных органах. То же самое отмечается у птиц при отравлении производными нафталина (алдрин и ди-элдр"ин).

Поэтому для предупреждения отравлений обработку живот­ных хлорорганическими инсектицидами надо осуществлять со­гласно существующим инструкциям, необходимо хранить ядо­химикаты в условиях, исключающих случайный контакт с ними животных, особенно молодняка. При использовании этих пре­паратов для обработки растений необходимо принять надлежа­щие меры к ограждению соприкосновения с ними животных всех видов и птиц. При применении ядохимикатов как данной группы, так и фосфорорганических инсектицидов необходимо обратить особое внимание на то, чтобы не допустить посеще­ния пчелами растений, обработанных указанными препа­ратами.

Анализ. Анализ кормовых средств, содержащих в себе хлор-органические инсектициды, в целях уточнения диагноза прак­тически не осуществляется. В этом нет никакой необходи­мости.

Встречается надобность в установлении содержания ДДТ в пищевых продуктах (по линии санитарной службы) и в зерне. Использование животным и птицам зерна, в котором установ­лено наличие ДДТ, должно быть исключено. При наличии в зерне гексахлорана выше 1-1,5 мг на 1 кг оно может быть использовано на корм.

Определение ДДТ производится в специальных лаборато­риях методом Кульберга и Шима согласно установленной инст­рукции, а гексахлорана -по методу Свершкова.

Установлено, что остаточное количество метоксихлора в мо­локе не должно превышать 14 мг на 1 кг молока.

Список литературы:

Баженов С.В. «Ветеринарная токсикология» // Ленинград «Колос» 1964

Голиков С.Н. «Актуальные проблемы современной токсикологии» // Фармакология Токсикология –1981 №6.-с.645-650

Лужников Е.А. «Острые отравления» //М. «Медицина» 1989