Российские телескопы в космосе. Современные наземные и космические телескопы. Запуск и начало работы

Российские телескопы в космосе. Современные наземные и космические телескопы. Запуск и начало работы
Российские телескопы в космосе. Современные наземные и космические телескопы. Запуск и начало работы

Телескоп «Джеймс Уэбб» - это орбитальная инфракрасная обсерватория, которая должна заменить тот самый знаменитый космический телескоп «Хаббл».

Это очень сложный механизм. Работа над его идет около 20 лет! «Джеймс Уэбб» будет обладать составным зеркалом 6,5 метров в диаметре и стоить около 6.8 млрд долларов. Для сравнения, диаметр зеркала «Хаббла» - «всего» 2.4 метра.

Посмотрим?


1. Телескоп «Джеймс Уэбб» должен быть размещен на гало-орбите в точке Лагранжа L2 системы Солнце - Земля. А в космосе холодно. Здесь показаны испытания, проводимые 30 марта 2012, направленные на изучение возможности противостоять холодным температурам пространства. (Фото Chris Gunn | NASA):



2. «Джеймс Уэбб» будет обладать составным зеркалом 6.5 метров в диаметре с площадью собирающей поверхности 25 м². Много это, или мало? (Фото Chris Gunn):

3. Сравним с «Хабблом». Зеркало «Хаббла» (слева) и «Уэбба» (справа) в одном масштабе:

4. Полномасштабная модель космического телескопа Джеймса Уэбба в Остине, штат Техас, 8 марта 2013. (Фото Chris Gunn):

5. Проект телескопа представляет собой международное сотрудничество 17 стран, во главе которых стоит NASA, со значительным вкладом Европейского и Канадского космических агентств. (Фото Chris Gunn):

6. Изначально запуск намечался на 2007 год, в дальнейшем переносился на 2014 и на 2015 год. Однако первый сегмент зеркала был установлен на телескоп лишь в конце 2015 года, а полностью главное составное зеркало было собрано только в феврале 2016 года.(Фото Chris Gunn):

7. Чувствительность телескопа и его разрешающая способность напрямую связаны с размером площади зеркала, которое собирает свет от объектов. Учёные и инженеры определили, что минимальный диаметр главного зеркала должен быть 6.5 метра, чтобы измерить свет от самых далёких галактик.

Простое изготовление зеркала, подобного зеркалу телескопа «Хаббл», но большего размера, было неприемлемо, так как его масса была бы слишком большой, чтобы можно было запустить телескоп в космос. Команде учёных и инженеров необходимо было найти решение, чтобы новое зеркало имело 1/10 массы зеркала телескопа «Хаббл» на единицу площади. (Фото Chris Gunn):

8. Не только у нас всё дорожает от начальной сметы. Так, стоимость телескопа «Джеймс Уэбб» превысила изначальные расчёты по меньшей мере в 4 раза. Планировалось, что телескоп обойдётся в 1,6 млрд долл. и будет запущен в 2011 году, однако по новым оценкам стоимость может составить 6.8 млрд, при этом запуск состоится не ранее 2018 года. (Фото Chris Gunn):

9. Это спектрограф ближнего инфракрасного диапазона. Он будет анализировать спектр источников, что позволит получать информацию как о физических свойствах исследуемых объектов (например, температуре и массе), так и об их химическом составе. (Фото Chris Gunn):

Телескоп позволит обнаруживать относительно холодные экзопланеты с температурой поверхности до 300 К (что практически равно температуре поверхности Земли), находящиеся дальше 12 а. е. от своих звёзд, и удалённые от Земли на расстояние до 15 световых лет. В зону подробного наблюдения попадут более двух десятков ближайших к Солнцу звезд. Благодаря «Джеймсу Уэббу» ожидается настоящий прорыв в экзопланетологии - возможностей телескопа будет достаточно не только для того, чтобы обнаруживать сами экзопланеты, но даже спутники и спектральные линии этих планет.

11. Инженеры тестируют в камере. систему подъема телескопа, 9 сентября 2014. (Фото Chris Gunn):

12. Исследование зеркал, 29 сентября 2014. Шестиугольная форма сегментов была выбрана не случайно. Она обладает высоким коэффициентом заполнения и имеет симметрию шестого порядка. Высокий коэффициент заполнения означает, что сегменты подходят друг к другу без зазоров. Благодаря симметрии 18 сегментов зеркала можно разделить на три группы, в каждой из которых настройки сегментов идентичны. Наконец, желательно, чтобы зеркало имело форму, близкую к круговой - для максимально компактного фокусирования света на детекторах. Овальное зеркало, например, дало бы вытянутое изображение, а квадратное послало бы много света из центральной области. (Фото Chris Gunn):

13. Очистка зеркала сухим льдом из двуокиси углерода. Тряпками здесь никто не трет. (Фото Chris Gunn):

14. Камера A — это гигантская испытательная камера с вакуумом, которая будет моделировать космическое пространства при испытаниях телескопа «Джеймса Уэбба», 20 мая 2015. (Фото Chris Gunn):

17. Размер каждого из 18 шестигранных сегментов зеркала составляет 1.32 метра от ребра до ребра. (Фото Chris Gunn):

18. Масса непосредственно самого́ зеркала в каждом сегменте - 20 кг, а масса всего сегмента в сборе - 40 кг. (Фото Chris Gunn):

19. Для зеркала телескопа «Джеймса Уэбба» используется особый тип бериллия. Он представляет собой мелкий порошок. Порошок помещается в контейнер из нержавеющей стали и прессуется в плоскую форму. После того как стальной контейнер удалён, кусок бериллия разрезается пополам, чтобы сделать две заготовки зеркала около 1.3 метра в поперечнике. Каждая заготовка зеркала используется для создания одного сегмента. (Фото Chris Gunn):

20. Затем поверхность каждого зеркала стачивается для придания формы, близкой к расчётной. После этого зеркало тщательно сглаживают и полируют. Этот процесс повторяется до тех пор, пока форма сегмента зеркала не станет близка к идеальной. Далее сегмент охлаждается до температуры −240 °C, и с помощью лазерного интерферометра производятся измерения размеров сегмента. Затем зеркало с учётом полученной информации проходит окончательную полировку. (Фото Chris Gunn):

21. По завершению обработки сегмента передняя часть зеркала покрывается тонким слоем золота для лучшего отражения инфракрасного излучения в диапазоне 0,6-29 мкм, и готовый сегмент проходит повторные испытания при криогенных температурах. (Фото Chris Gunn):

22. Работа над телескопом в ноябре 2016 года. (Фото Chris Gunn):

23. НАСА завершило сборку космического телескопа «Джеймс Уэбб» в 2016 году и приступило к его испытаниям. Это снимок от 5 марта 2017 года. На длинной выдержке техники выглядят призраками. (Фото Chris Gunn):

26. Дверь в ту самую камеру А с 14-й фотографии, в которой моделируется космическое пространство. (Фото Chris Gunn):

28. Текущие планы предусматривают, что телескоп будет запущен с помощью ракеты «Ариан-5» весной 2019 года. Отвечая на вопрос о том, что ученые ожидают узнать с помощью нового телескопа, ведущий научный сотрудник проекта Джон Мэтер сказал: «Надеюсь, мы найдем что-то, о чем никто ничего не знает». UPD. Запуск телескопа «Джеймс Уэбб» перенесен на 2020 год. (Фото Chris Gunn).

Космические телескопы - это, как правило, телескопы, работающие за пределами атмосферы Земли и, тем самым, не утруждающие себя просвечиванием через эту атмосферу. Самым известным космическим телескопом на сегодняшний день является космический телескоп Хаббл, открывший сотни экзопланет, показавший множество живописных галактик, космических событий и расширивший горизонты нашего взгляда в космос. На смену Хабблу придет космический телескоп Джеймса Вебба, который будет запущен в космос в 2018 году и зеркало которого будет превышать диаметр зеркала Хаббла почти в три раза. После Джеймса Вебба ученые планируют отправить в космос Космический телескоп высокого разрешения (HDST), но это пока только в планах. Как бы то ни было, на долю космических телескопов приходится и будет приходиться большая часть наших открытий в глубоком космосе.

Мы представляем себе космос как темное, холодное и тихое место, где нет ничего, кроме бесконечной Вселенной вокруг. Однако насчет тишины космического пространства можно поспорить. По всей Вселенной перемещаются тысячи самых разных радиосигналов. Их испускают различные космические объекты и большая часть таких сигналов — это не более, чем шум и помехи. Но встречаются среди них и те, что к помехам отнести никак не получается. И недавно зарегистрировал огромный китайский радиотелескоп.

К настоящему времени развитие оптики и астрономии привело к разнообразию и применяемых систем телескопов. Виды телескопов различают по назначению, по применяемой оптической схеме и по устройству монтировки.

По назначению телескопы бывают визуальные и фотографические, последние подразделяются на инфракрасные, телескопы видимого диапазона, ультрафиолетовые и рентгеновские. Существуют также солнечные телескопы и внезатменные коронографы – инструменты, позволяющие получить изображение солнечной короны. По применяемой оптической схеме все разновидности телескопов можно разделить на линзовые (рефракторы), зеркальные (рефлекторы) и зеркально-линзовые (катадиоптрики). Монтировка телескопа бывает неподвижная (с внешним перенаправлением света), азимутальная (с вертикальным и горизонтальным поворотом) и экваториальная (с поворотом относительно небесной сферы). Кроме оптических, возможны также радио- и нейтринные телескопы, но смотреть ни в те, ни в другие нельзя и вся информация получается электронной обработкой сигналов с различных датчиков.

Звёздные телескопы профессиональной астрономии в настоящее время достигли апертуры 8 – 11 м. По своему конструктивному исполнению это рефлекторы для съемки в прямом фокусе, из-за малых полей не оснащенные никакой промежуточной оптикой. Целью их является наивысшее разрешение при как можно большей светосиле, что ведет к необходимости подстраивать форму главного зеркала под атмосферные флуктуации.

Такая, как её называют, адаптивная оптика, впервые возникла в 1980-е годы применительно к боевым лазерным системам, предназначенным для уничтожения спутников, гражданское её применение началось в телескопах VLT Европейской Южной обсерватории, установленных в Чили. Зеркала всех пяти телескопов этой группы, имеющие апертуру 8,3 метра могут быстро деформироваться на небольшую величину с помощью системы гидравлических домкратов, размещенных с их тыльной стороны. Величина деформаций рассчитывается ЭВМ в реальном времени исходя из искажений тестового изображения “искусственной звезды”, создаваемой в верхних слоях атмосферы установленным на телескопе инфракрасным лазером.

Чуть в стороне от тестового изображения тем же зеркалом создается рабочее, идущее на исследовательские задачи.
В двух телескопах имени Кека, установленных на гавайской обсерватории США и имеющих апертуру свыше 11 м применяется аналогичный принцип компенсации атмосферных искажений, но вместо цельного зеркала изображение на фотоприемнике создается целой системой из десятков сегментов, каждый из которых поворачивается собственным домкратом. Эти инструменты уже превзошли по разрешающей способности орбитальный телескоп имени Хаббла, но существуют европейские и американские проекты телескопов с сегментированными зеркалами апертурой 30 – 60 метров.

Тем не менее, если в общем случае апертура в 20 метров для оптического телескопа пока недостижима, то для некоторых частных задач она может составлять десятки и сотни метров. Речь о сведении в одну точку изображений с двух разных телескопов, нацеленных на один и тот же участок неба. Такой принцип, называемый в астрономии фокусом Кудэ, используется в задачах звёздной интерферометрии, позволяющей восстанавливать изображения отдельных звёзд и точно измерять диаметр их дисков, недостижимый никакими другими способами. Тем не менее, ни простая фотосъёмка, ни тем более визуальное наблюдение по такой схеме ничего не даст – необходима компьютерная обработка серии снимков. Примером действующего звёздного интерферометра является австралийская система с расстоянием 188 метров между телескопами.

Для широкопольных наблюдений и целенаправленного поиска новых объектов, таких как новые звёзды, астероиды и транснептуновые объекты применяются виды телескопов преимущественно катадиоптрической схемы – Шмидта, Гамильтона или Максутова. Не последнюю роль в организации подобных поисков играет и скорость экспозиции, передачи данных и их обработки на ЭВМ. Определенный шанс на успех есть и у любителя, вооруженного цифровой зеркальной фотокамерой с 200 – 300 мм телеобъективом. Причем по фокусному расстоянию, а не по апертуре – профессионалы никогда не смогут одновременно наблюдать везде, а вспыхнувшая Новая часто видна и в обыкновенный бинокль.

Рефракторы в профессиональной звёздной астрономии остались теперь только в виде упомянутых телеобъективов и искателей более крупных инструментов. Огромные ахроматы прошлого и визуально и фотографически полностью перекрываются более чем скромными рефлекторами и катадиоптриками. Апохроматы в основном задействуют на поиске космического мусора и околоземных объектов в диапазоне самых малых апертур – здесь они оказываются выигрышными.

Солнечные телескопы, как следует из их названия, предназначены для наблюдения одного-единственного космического объекта. Наблюдения по понятным причинам ведутся днем и имеют свою специфику. Прежде всего, необходимо ослабить яркость создаваемого солнечным телескопом изображения в несколько сот тысяч раз. Эта задача решается установкой апертурных солнечных фильтров.



Кроме того, вся оптика отражательных солнечных телескопов не имеет покрытия, что однако, обеспечивает ослабление яркости только в десятки раз. Другая часть достигается применением сверхнизкой светосилы, растягивающей итоговое изображение в круг диаметром до метра и выше при умеренной апертуре самого телескопа. Последняя впрочем не должна быть слишком малой величиной и обеспечивать разрешающую способность, достаточную для различения объектов на поверхности Солнца, разделенных промежутком не более нескольких сотен километров.

Сочетание этих, во многом противоречивых требований, приводит к тому, что солнечный телескоп часто выполняют неподвижным, для чего строится специальная башня. В этом случае лучи дневного светила направляются в башню с помощью целостата – специальной системы из двух плоских зеркал превосходящих по размеру апертуру телескопа.

Специфика наблюдений с Земли приводит к тому, что мы не можем наблюдать обратную сторону Солнца пока она не повернется к нам примерно через 29 дней. Этот недостаток полностью устранен в космической системе SOHO, в которой три солнечных телескопа размещены на станциях, выведенных на гелиоцентрическую орбиту и размещенных в вершинах подвижного равностороннего треугольника.

“Родственниками” солнечных телескопов являются внезатменные коронографы – устройства еще более узкой специализации. Ни солнечные пятна ни гранулы в них смотреть нельзя, зато тусклое сияние короны отсекается одновременно и от атмосферной засветки и от мощного свечения самого диска.

Коронограф был изобретен французским оптиком Лио в 1862 году, но по-настоящему им заинтересовались в годы Второй мировой войны, когда по форме солнечной короны предсказывали магнитные бури. Реализация порядком забытой идеи стала секретной – до начала 50-х годов. С изобретением узкополосных фильтров, настроенных на линии поглощения спектров водорода и кальция коронограф стал общедоступным и может быть продан любому желающему.

Ультрафиолетовые телескопы по устройству близки к обычным рефлекторам. Земная атмосфера пропускает ультрафиолетовое излучение ближней области, с длиной волны до 350 нм, поэтому наземные ультрафиолетовые телескопы размещают в высокогорных районах. Объектами их исследования могу быть как отдельные звёзды, так и галактики, которые регистрируются по выбросам ультрафиолетового излучения при процессах, происходящих в их ядрах. Вследствие меньшей длины волны оптика ультрафиолетовых телескопов должна быть выполнена с большей точностью, чем телескопов видимого диапазона.

Лимитирующим элементом по светопропусканию являются преломляющие детали, которые в случае небольших объективов выполняются из плавленого кварца. В этом случае допускается остаточный хроматизм. Создание широкопольных ультрафиолетовых телескопов представляет собой серьезную технологическую проблему, так как в обычных камерах Шмидта и Ричи-Кретьена используются корректирующие линзы, которые из кварца изготовить затруднительно. Одним из путей решения является т.н. зеркальная камера Шмидта, в которой корректирующий элемент выполнен в виде наклонно установленного зеркала с профилем, близким к плоскому. Такая система иногда устанавливается на спутниках, но очень чувствительна к разъюстировке.

Инфракрасные телескопы дают уникальную возможность наблюдать звёзды сквозь пылевые облака, ослабляющие их видимый блеск в видимом диапазоне на несколько сот звёздных величин. Это связано с тем, что излучение нагревает частицы пыли и переизлучается ей уже в инфракрасном диапазоне. В частности, такой метод наблюдений позволил построить замкнутую орбиту звезды, близко обращающейся вокруг центра нашей Галактики, что дало достоверное доказательство того, что центральный объект является черной дырой.

Кроме звёзд, объектами наблюдений в такие телескопы могут являться планеты солнечной системы и их спутники, что дает возможность уточнить структуру их поверхности по характеру её теплового излучения. Большая проницающая способность позволяет использовать инфракрасные телескопы для поиска транснептуновых объектов и околоземных астероидов.

Вследствие специфики теплового излучения инфракрасный телескоп всегда должен быть сильно охлажден. Криостат – устройство, поддерживающее телескоп при постоянной отрицательной температуре, ранее выполнялось на основе “сухого льда” - твердой углекислоты, затем стал использоваться жидкий азот и в настоящее время – жидкий гелий. Инфракрасная матрица – очень дорогостоящее устройство, стоимость которого доходит до миллионов $. Оптика инфракрасных телескопов преимущественно зеркальная, вследствие большей длины волны теплового излучения чем видимого, оптика может быть выполнена с меньшей степенью точности. Крупнейший наземный инфракрасный телескоп установлен на Европейской Южной Обсерватории в Чили и имеет алюминиевое зеркало с адаптивной оптикой общей апертурой 12 м.

Рентгеновские телескопы в большинстве случаев выводятся в космос, так как земная атмосфера сильно ослабляет рентгеновские лучи. Другой спецификой принимаемого излучения является практическое отсутствие его преломления большинством прозрачных материалов и отражение металлами только под очень острым углом. Это вынуждает применять фокусирование высокоэнергетических рентгеновских квантов либо с помощью внеосевых параболических зеркал со специальным покрытием, либо использовать принцип кодирующей апертуры.

В первом случае зеркало размещается почти по касательной к падающему волновому фронту и в большинстве случаев покрывается золотом или иридием. Иногда может использоваться диэлектрическое покрытие, доходящее до нескольких сотен слоёв. При использовании кодирующей апертуры изображение на фотоприемнике создается пропусканием исследуемого излучения через матрицу, образованную прозрачными и непрозрачными ячейками, размещенными в определенной последовательности. Восстанавливает полученное изображение бортовая ЭВМ космического аппарата.

Таким образом, виды телескопов современной астрономия представляют собой мощные средства наблюдений, которые в последние годы приводят к поистине революционным открытиям.

2.Астрономи́ческая обсервато́рия

Астрономи́ческая обсервато́рия - учреждение, предназначенное для проведения систематических наблюдений небесных тел; возводится обыкновенно на высокой местности, с которой открывался бы большой кругозор во все стороны. Каждая обсерватория оборудована телескопами, как оптическими, так и работающими в других областях спектра (Радиоастрономия).

Космический телескоп «Хаббл»


Обычно астрономы строили свои обсерватории на вершинах гор, выше облаков и загрязненной атмосферы. Но даже тогда изображение искажалось воздушными потоками. Самое четкое изображение доступно только из внеатмосферной обсерватории - космоса.


С помощью телескопа можно увидеть то, что недоступно человеческому глазу, поскольку телескоп собирает больше электромагнитного излучения. В отличие от подзорной трубы, в которой для сбора и фокусирования света используются линзы, в больших астрономических телескопах эту функцию выполняют зеркала.


Телескопы с самыми большими зеркалами должны иметь наилучшее изображение, поскольку собирают наибольшее количество излучения.


Космический телескоп «Хаббл» — автоматическая обсерватория на орбите вокруг Земли, названная в честь Эдвина Хаббла, американского астронома.



И хотя диаметр зеркала "Хаббла" только 2,4 м - меньше самых больших телескопов на Земле, - он может видеть объекты в 100 раз менее четкие, и детали в десять раз мельче, чем лучшие наземные телескопы. И это потому, что он находится выше искажающей атмосферы.


Телескоп «Хаббл» — совместный проект NASA и Европейского космического агентства.


Размещение телескопа в космосе даёт возможность регистрировать электромагнитное излучение в диапазонах, в которых земная атмосфера непрозрачна, в первую очередь — в инфракрасном диапазоне.


Из-за отсутствия влияния атмосферы, разрешающая способность телескопа в 7—10 раз больше аналогичного телескопа, расположенного на Земле.


Марс

Космический телескоп "Хаббл" помог ученым узнать много нового об устройстве нашей галактики, потому оценить его важность для человечества очень трудно.


Достаточно взглянуть на список самых важных открытий этого оптического устройства, чтобы понять, насколько полезен он был, и каким важным инструментом в изучении космоса он еще может быть.


С помощью телескопа "Хаббл" было изучено столкновение Юпитера с кометой, было получено изображение рельефа Плутона, данные с телескопа стали основой гипотезы о массе черных дыр, находящихся в центре абсолютно каждой галактики.


Ученые получили возможность увидеть полярные сияния на некоторых планетах Солнечной системы, например, Юпитере и Сатурне, а также были сделаны многие наблюдения и открытия.


Юпитер

Космический телескоп "Хаббл" "заглянул" в другую солнечную систему, отдаленную от нашей на 25 световых лет, и впервые получил изображение нескольких ее планет.


Телескоп "Хаббл" получил изображение новых планет

На одной из фотографий, полученных в оптическом, то есть в видимом свете, "Хаббл" запечатлел планету Фомалхот, вращающуюся по орбите вокруг яркой звезды Фомалхот, расположенной от нас на расстоянии 25 световых лет (около 250 триллионов километров) в созвездии Южная Рыба.


"Данные с "Хаббла" невероятно важны. Излучение света с планеты Фомалхот в миллиард раз слабее света, исходящего от звезды", - прокомментировал изображение новой планеты астроном из Калифорнийского университета Пол Калас. Он и другие ученые начали исследование звезды Фомалхот еще в 2001 году, когда о существовании планеты рядом со звездой еще не было известно.


В 2004 году "Хаббл" направил на Землю первые снимки районов вокруг звезды.


На новых снимках с космического телескопа "Хаббл", астроном получил "документальное" подтверждение своим предположениям о существовании планеты Фомалхот.


С помощью фотографий орбитального телескопа ученые "увидели" также еще три планеты в созвездии Пегаса.
Всего астрономами за пределами нашей Солнечной системы обнаружено около 300 планет.


Но все эти открытия делались на основе косвенных признаков, главным образом, через наблюдение за воздействием их гравитациоционных полей на звезды, вокруг которых они обращаются.


"Каждая планета вне нашей солнечной системы была только на схеме, - отметил Брюс Макинтош, астрофизик из Национальной лаборатории в Калифорнии. - Мы безуспешно пытались получить изображения планет в течение восьми лет, а теперь у нас уже есть фотографии нескольких планет сразу".


За 15 лет работы на околоземной орбите «Хаббл» получил 700 тысяч изображений 22 тысяч небесных объектов — звёзд, туманностей, галактик, планет.


Тем не менее, цена, которую приходится платить за достижения «Хаббла» весьма высока: стоимость содержания космического телескопа выше в 100 и более раз, чем наземного рефлектора, с 4-метровым зеркалом.

Уже в первые недели после начала работы телескопа в 1990 году, полученные изображения продемонстрировали серьёзную проблему в оптической системе телескопа. Хотя качество изображений было лучше, чем у наземных телескопов, «Хаббл» не мог достичь заданной резкости, и разрешение снимков было значительно хуже ожидаемого.
Анализ изображений показал, что источником проблемы является неверная форма главного зеркала. Оно было изготовлено слишком плоским по краям. Отклонение от заданной формы поверхности составило лишь 2 микрометрa, но результат оказался катастрофическим — оптический дефект, при котором свет, отражённый от краёв зеркала, фокусируется в точке, отличной от той, в которой фокусируется свет, отражённый от центра зеркала.
Потеря значительной части светового потока значительно уменьшили пригодность телескопа для наблюдений тусклых объектов и получения изображений с высокой контрастностью. Это означало, что практически все космологические программы стали просто невыполнимыми, поскольку требовали наблюдений особо тусклых объектов.


В течение первых трёх лет работы, до установки корректирующих устройств телескоп выполнил большое количество наблюдений. Дефект не оказывал большого влияния на спектроскопические замеры. Несмотря на отменённые из-за дефекта эксперименты, было достигнуто множество важных научных результатов.


Техническое обслуживание телескопа.


Техническое обслуживание телескопа «Хаббла» производится космонавтами во время выходов в открытый космос с космических кораблей многоразового использования типа «Спейс Шаттл».


Всего были осуществлены четыре экспедиции по обслуживанию телескопа «Хаббл».

В связи с выявившимся дефектом зеркала, первая экспедиция по обслуживанию телескопа должна была установить на телескопе корректирующую оптику. Экспедиция (2-13 декабря 1993 г.) была одной из сложнейших, были осуществлены пять длительных выходов в открытый космос. Кроме этого были заменены солнечные батареи, обновлен бортовой вычислительный комплекс, была произведена коррекция орбиты.

Второе техобслуживание было произведено 11-21 февраля 1997 года. Было заменено исследовательское оборудование, заменён бортовой регистратор, произведён ремонт теплоизоляции и выполнена коррекция орбиты.


Экспедиция 3А состоялась 19-27 декабря 1999 года. Было принято решение о досрочном проведении части работ. Это было вызвано тем, что три из шести гироскопов системы наведения вышли из строя. Экспедиция заменила все шесть гироскопов, датчик точного наведения и бортовой компьютер.


Экспедиция 3В (четвёртая миссия) выполнена 1-12 марта 2002 года. В ходе экспедиции камера съёмки тусклых объектов была заменена усовершенствованной обзорной камерой. Были во второй раз заменены солнечные батареи. Новые панели были на треть меньше по площади, что значительно уменьшило потери на трение в атмосфере, но при этом вырабатывали на 30% больше энергии, благодаря этому стала возможна одновременная работа со всеми приборами, установленными на борту обсерватории.


Произведённые работы существенно расширили возможности телескопа, позволили получить изображения глубокого космоса.


Предполагается, что телескоп Хаббл продолжит свою работу на орбите, по крайней мере, до 2013 года.

Наиболее значимые наблюдения

* «Хаббл» предоставил высококачественные изображения столкновения кометы Шумейкеров-Леви 9 с Юпитером в 1994 году.


* Впервые получены карты поверхности Плутона и Эриды.


* Впервые наблюдались ультрафиолетовые полярные сияния на Сатурне, Юпитере и Ганимеде.


* Получены дополнительные данные о планетах вне солнечной системы, в том числе, спектрометрические.


* Найдено большое количество протопланетных дисков вокруг звёзд в Туманности Ориона. Доказано, что процесс формирования планет происходит у большинства звёзд нашей Галактики.


* Частично подтверждена теория о сверхмассивных чёрных дырах в центрах галактик, на основе наблюдений выдвинута гипотеза, связывающая массу чёрных дыр и свойства галактики.


* уточнён возраст Вселенной — 13,7 млрд. лет.

Космические телескопы

Вести наблюдения за планетами, звездами, туманностями, галактиками прямо из космоса – о такой возможности астрономы мечтали давным-давно. Дело в том, что атмосфера Земли, защищающая человечество от многих космических неприятностей, одновременно и мешает вести наблюдения за отдаленными небесными объектами. Облачный покров, нестабильность самой атмосферы вносят искажения в получаемые изображения, а то и вообще делают астрономические наблюдения невозможными. Поэтому, как только на орбиту стали посылать специализированные спутники, астрономы стали настаивать на выводе в космос астрономических инструментов.

Первенец «Хаббл». Решающий прорыв в этом направлении произошел в апреле 1990 года, когда один из «шаттлов» вывел в космос телескоп «Хаббл» весом 11 т. Уникальный прибор длиной 13,1 м и диаметром главного зеркала 2,4 м, который обошелся налогоплательщикам США в 1,2 млрд долларов, был назван в честь знаменитого американского астронома Эдвина Хаббла, который первым заметил, что галактики разбегаются от некоего центра во все стороны.

Космический телескоп «Хаббл» и сделанный им снимок столпов творения – рождения новых звёзд в туманности Орел

Работа «Хаббла» началась с неприятностей. Через два месяца после того, как он был выведен на орбиту высотой 613 км, стало очевидно, что основное зеркало сделано с браком. Его кривизна у краев отличалась от расчетной на несколько микрон – пятидесятую часть толщины человеческого волоса. Тем не менее и этой малости оказалось достаточно, чтобы «Хаббл» оказался близорук, а получаемое им изображение расплывчато.

Поначалу недостатки изображения пытались исправить на Земле с помощью компьютерных корректирующих программ, но это помогало слабо. Тогда было решено провести уникальную операцию по исправлению «близорукости» прямо в космосе, прописав «Хабблу» специальные «очки» – корректирующую оптическую систему.

И вот ранним утром 2 декабря 1993 года семеро астронавтов отправились на «шаттле» «Индевор» проводить уникальную операцию. На Землю они вернулись через 11 суток, сделав во время пяти выходов в открытый космос, казалось бы, невозможное – телескоп «прозрел». Это стало очевидным после получения от него очередной порции снимков. Их качество существенно возросло.

За годы своего полета космическая обсерватория совершила несколько десятков тысяч оборотов вокруг Земли, «накрутив» при этом миллиарды километров.

Телескоп «Хаббл» позволил наблюдать уже более 10 тысяч небесных объектов. Два с половиной триллиона байтов информации, собранной телескопом, хранится на 375 оптических дисках. И она все еще продолжает накапливаться. Телескоп позволил открыть существование черных дыр в космосе, выявил наличие атмосферы у спутника Юпитера – Европы, открыл новые спутники Сатурна, позволил заглянуть в самые удаленные уголки космоса…

Во время второго «техосмотра» в феврале 1997 года на телескопе заменили спектрограф высокого разрешения, спектрограф слабых объектов, устройство наводки на звезды, магнитофон для записи информации и электронику солнечных батарей.

По плану «Хаббл» должен был «выйти на пенсию» в 2005 году. Однако он исправно работает и по сию пору. Тем не менее ему уже готовится почетная отставка. На смену ветерану в 2015 году должен заступить на космическую вахту новый уникальный космический телескоп, названный в честь Джеймса Уэбба – одного из директоров NASA. Это при нем астронавты впервые высадились на Луну.

Что день грядущий нам готовит? Поскольку новый телескоп будет иметь составное зеркало диаметром 6,6 м и общей площадью 25 кв. м, полагают, что «Уэбб» будет в 6 раз мощнее своего предшественника. Астрономы смогут наблюдать объекты, которые светятся в 10 млрд раз слабее, чем самые тусклые звезды, видимые невооруженным глазом. Они смогут увидеть звезды и галактики, которые были свидетелями младенчества Вселенной, а также определить химический состав атмосфер планет, вращающихся вокруг далеких звезд.

В создании новой орбитальной инфракрасной обсерватории принимают участие более 2000 специалистов из 14 стран. Работы над проектом начались еще в 1989 году, когда NASA предложило мировому научному сообществу проект «Космический телескоп следующего поколения» (Next Generation Space Telescope). Диаметр главного зеркала планировался не меньше 8 м, но в 2001 году амбиции пришлось умерить и остановиться на 6,6 м – зеркало больших размеров не влезает в ракету «Ариан-5», а «шаттлы», как известно, летать уже перестали.

«Джеймс Уэбб» полетит в космос под прикрытием «звездного зонта». Его щит в форме гигантского цветка укроет телескоп от звездного излучения, мешающего разглядеть отдаленные галактики. Огромный зонт площадью 150 кв. м будет состоять из пяти слоев полиамидной пленки, каждый из которых не толще человеческого волоса. Шесть лет эту пленку испытывали на прочность, проверяя, сможет ли она устоять против бомбардировки микрометеоритами. Три внутренних слоя покроют ультратонким слоем алюминия, а два внешних обработают кремниевым сплавом. Солнцезащитный экран будет функционировать по принципу зеркала, отражая излучение Солнца и прочих светил обратно в космос.

Как известно, в космосе настолько холодно, что за полгода телескоп охладится до температуры ниже –225 °C. Но и она слишком высока для MIRI – прибора для наблюдений в среднем инфракрасном диапазоне (Mid-Infrared Instrument), состоящего из камеры, коронографа и спектрометра. MIRI придется охлаждать дополнительно с помощью холодильного оборудования на основе гелия до температуры –266 °C – всего на 7 °C выше абсолютного нуля.

Кроме того, астрономы постарались найти такую точку в пространстве, где телескоп может находиться годами, развернувшись «спиной» одновременно к Земле, Луне и Солнцу, закрывшись от их излучения экраном. За год, который уйдет на один оборот вокруг Солнца, телескоп сможет обозреть все небесное пространство.

Недостатком этой точки либрации Лагранжа L2 является ее удаленность от нашей планеты. Так что если вдруг у телескопа обнаружится какая-то неисправность, как это было «Хабблом», исправить ее в ближайшие годы вряд ли удастся – лететь ремонтной бригаде ныне просто не на чем; корабли нового поколения появятся лет через пять, не раньше.

Это заставляет ученых, конструкторов и испытателей, доводящих ныне «Уэбб» до кондиции, быть предельно внимательными. Ведь телескоп Уэбба будет работать на расстоянии в 2500 раз превышающем то, на котором работал «Хаббл», и почти в четыре раза превышающем удаленность Луны от Земли.

Главное зеркало диаметром 6,6 м в собранном виде не поместится ни на одном из существующих космических аппаратов. Поэтому оно составлено из более мелких деталей, чтобы могло легко складываться. В итоге телескоп состоит из 18 гексагональных зеркал меньшего размера, с длиной сторон 1,32 м. Зеркала выполнены из легкого и прочного металла бериллия. Каждое из 18 зеркал, плюс три резервных, весит около 20 кг. Как говорится, почувствуйте разницу между ними и тонной, которую весит 2,4-метровое зеркало «Хаббла».

Зеркала шлифуются и полируются с точностью до 20 нанометров. Звездный свет будет отражаться главным зеркалом на вторичное, установленное над ним, которое при необходимости может автоматически регулироваться. Через отверстие в центре главного зеркала свет вновь будет отражаться – уже на приборы.

На Земле вновь отшлифованные зеркала помещаются в гигантскую морозильную камеру NASA, где созданы космические условия – лютый холод и вакуум. Снизив температуру до –250 °C, специалисты должны убедиться в том, что зеркала примут ожидаемую форму. Если нет, то их снова подшлифуют, стараясь добиться идеала.

Готовые зеркала затем позолотят, поскольку именно золото наилучшим образом отражает тепловые инфракрасные лучи. Далее зеркала снова заморозят, они пройдут финальное тестирование. Затем телескоп соберут окончательно и проверят его не только на четкость работы всех узлов, но и на устойчивость к вибрациям и перегрузкам, неизбежным при запуске ракеты в космос.

Поскольку золото поглощает излучение синей части спектра видимого света, телескоп Уэбба не сможет сфотографировать небесные объекты такими, какими они воспринимаются невооруженным глазом. Зато сверхчувствительные датчики MIRI, NIRCam, NIRSpec и FGS-TFI могут обнаружить инфракрасный свет с длинами волн от 0,6 до 28 мкм, что позволит сфотографировать первые звезды и галактики, образовавшиеся в результате Большого Взрыва.

Ученые предполагают, что первые звезды сформировались через несколько сотен миллионов лет после Большого Взрыва, а затем эти гиганты с излучением в миллионы раз сильнее солнечного взорвались как сверхновые. Проверить, так ли это на самом деле, можно лишь заглянув на самые окраины Вселенной.

Впрочем, новый космический телескоп предназначен не только для наблюдения за самыми удаленными и, следовательно, древними объектами Вселенной. Ученых также интересуют пылевые области галактики, где и поныне зарождаются новые звезды. Инфракрасное излучение способно проникать сквозь пыль, и благодаря «Джеймсу Уэббу» астрономы смогут постичь процессы формирования звезд и сопровождающих их планет.

Ученые надеются не только зафиксировать сами планеты, вращающиеся вокруг звезд, удаленных от нас на бесконечные световые годы, но и проанализировать свет от экзопланет земного типа с целью определения состава их атмосферы. Например, пары воды и СО2 посылают специфические сигналы, по которым можно будет установить, есть ли на удаленных от нас планетах жизнь.

«Радиоастрон» готовится к работе. У этого космического телескопа оказалась непростая судьба. Работа над ним началась более десяти лет тому назад, но довести ее до конца все никак не удавалось – то денег не было, то преодоление тех или иных технических трудностей требовало больше времени, чем полагали сначала, то был очередной перерыв в космических запусках…

Но вот, наконец, в июле 2011 года спутник «Спектр-Р» с полезной нагрузкой около 2600 кг, из которых 1500 кг пришлось на раскрывающуюся параболическую антенну, а остальное на электронный комплекс, содержащий приемники космического излучения, усилители, блоки управления, преобразователи сигналов, систему передачи научных данных и т. д., был запущен.

Сначала ракета-носитель «Зенит-2SБ», а затем разгонный блок «Фрегат-2СБ» вывели спутник на вытянутую орбиту вокруг Земли высотой около 340 тыс. км.

Казалось бы, создатели аппаратуры из НПО имени Лавочкина вместе с главным конструктором Владимиром Бабышкиным могли вздохнуть свободно. Да не тут-то было!..

«Ракета-носитель отработала без замечаний, – рассказывал на пресс-конференции Владимир Бабышкин. – Затем были два включения разгонного блока. Орбита аппарата несколько необычна с точки зрения выведения, потому там достаточно много ограничений, которым мы должны были удовлетворять»…

В итоге оба включения разгонного блока проходили вне зоны видимости наземных станций с территории России, и это добавило волнений наземной команде. Наконец, телеметрия показала: и первое, и второе включения прошли благополучно, все системы отработали нормально. Открылись солнечные батареи, и дальше система управления удерживала аппарат в заданном положении.

Поначалу операция по раскрытию антенны, которая состоит из 27 лепестков, находившихся во время транспортировки в сложенном состоянии, намечалась на 22 июля. Процесс раскрытия лепестков занимает приблизительно 30 минут. Однако сразу процесс не пошел, и завершено раскрытие параболической антенны радиотелескопа было лишь 23 июля. К осени «зонтик» диаметром 10 м был раскрыт полностью. «Это позволит получать изображения, координаты и угловые перемещения различных объектов Вселенной с исключительно высоким разрешением», – подвели итоги первой стадии эксперимента специалисты.

После раскрытия зеркала приемной антенны космическому радиотелескопу требуется около трех месяцев для синхронизации с земными радиотелескопами. Дело в том, что работать он должен не в одиночку, а «в связке» с наземными приборами. Планируется, что на Земле в качестве синхронных радиотелескопов будут использованы два стометровых радиотелескопа в Грин-Бэнке, Западная Виргиния, США, и в Эффельсберге, Германия, а также знаменитая радиообсерватория Аресибо, в Пуэрто-Рико.

Направленные одновременно на один и тот же звездный объект, они будут работать в режиме интерферометра. То есть, говоря попросту, с помощью компьютерных методов обработки информации полученные данные сведут воедино, и полученная картина будет соответствовать той, что могла быть получена от радиотелескопа, диаметр антенны которого был бы на 340 тыс. км больше диаметра Земли.

Наземно-космический интерферометр с такой базой обеспечит условия для получения изображений, координат и угловых перемещений различных объектов Вселенной с исключительно высоким разрешением – от 0,5 угловой миллисекунды до нескольких микросекунд. «Телескоп будет обладать исключительно высоким угловым разрешением, что позволит получить ранее недостижимые по детальности изображения исследуемых космических объектов», – подчеркнул академик РАН Николай Кардашев, директор Академического космического центра ФИАН, головной организации по комплексу научной аппаратуры спутника «Радиоастрон».

Для сравнения: разрешение, которого можно добиться с помощью «Радиоастрона», будет как минимум в 250 раз выше, чем можно добиться с помощью наземной сети радиотелескопов, и более чем в 1000 раз выше, чем у космического телескопа «Хаббл», работающего в оптическом диапазоне.

Все это позволит исследовать окрестности сверхмассивных черных дыр в активных галактиках, рассмотреть в динамике строение областей, где образуются звезды в нашей галактике Млечный Путь; изучать нейтронные звезды и черные дыры в нашей Галактике; изучить структуру и распределение межзвездной и межпланетной плазмы; построить точную модель гравитационного поля Земли, а также провести еще множество других наблюдений и следований.

Из книги Занимательная анатомия роботов автора Мацкевич Вадим Викторович

Космические роботы В 1822 году великий английский поэт Дж. Байрон писал в своей поэме «Дон Жуан»: «Уж скоро мы, природы властелины, и на Луну пошлём свои машины»… Гениальное пророчество Дж. Байрона сбылось уже во второй половине XX века. Мы являемся очевидцами невиданного

Из книги Пилотируемые полеты на Луну автора Шунейко Иван Иванович

Космические программы США Беспилотные космические аппараты для исследования космического пространства и использования космической техники в практических целях.В 70-х гг. основное внимание уделяется исследованию внутренних планет Меркурий и Венера, а также планеты

Из книги Битва за звезды-2. Космическое противостояние (часть I) автора Первушин Антон Иванович

Из книги Битва за звезды-2. Космическое противостояние (часть II) автора Первушин Антон Иванович

4.2. Космические летные испытания пилотируемых кораблей Apollo-7, 8, 9, 10 Apollo-7 11 октября 1968 г. в 15 ч 02 мин 45 сек по Гринвичу был произведен запуск на орбиту ИСЗ ракетой-носителем Saturn IB основного блока корабля Apollo весом 18 777 кг с экипажем в составе Уолтер Ширра, Дойн Эйзел и Уолтер

Из книги Промышленное освоение космоса автора Циолковский Константин Эдуардович

Крылатые космические корабли «М-2» и «HL-10» Бесславный финал программы «Дайна-Сор» не охладил энтузиазма тех американских конструкторов, которые связывали будущее космонавтики с развитием авиации. С начала 1960-х годов всякая уважающая себя западная авиационная фирма

Из книги Баллистическая теория Ритца и картина мироздания автора Семиков Сергей Александрович

Крылатые космические системы «Saturn» В начале 60-х наиболее перспективной ракетой-носителем в США считалась ракета «Сатурн» («Saturn»), разработкой и совершенствованием которой занимался Центр космических полетов имени Дж. Маршалла в Хантсвилле (штат Алабама), возглавляемый

Из книги Взлёт 2011 04 автора Автор неизвестен

Воздушно-космические аппараты Мясищева С поручением оценить перспективы создания воздушно-космического аппарата, способного обеспечить планирующий спуск, Сергей Королев обратился не только к Цыбину, но и к Владимиру Мясищеву.С 1958 года в ОКБ-23 начались работы по

Из книги Обитаемые космические станции автора Бубнов Игорь Николаевич

«Космические» снаряды Джеральда Бюлля Как известно, все новое - это хорошо забытое старое. На примере материала предыдущей главы мы убедились, что развитие техники во многом основывается на этом общеизвестном соображении.Раз за разом конструкторская мысль на очередном

Из книги Новые космические технологии автора Фролов Александр Владимирович

Космические путешествия* Пусть не сетуют на меня любители художественного произведения. Тут такого не увидите. Цель этого труда заинтересовать картинами будущего космического существования человечества, побудить тем читателя к его достижению и соответствующей работе.

Из книги Эта удивительная подушка автора Гильзин Карл Александрович

§ 2.16 Вращающиеся звёзды и космические дуги Нужно следовать мудрости природы, которая как бы больше всего боится произвести что-нибудь излишнее или бесполезное, но зато часто одну вещь обогащает многими действиями. Николай Коперник, "О вращении небесных сфер" Выше мы

Из книги автора

§ 2.21 Радиогалактики и другие космические аномалии Таким образом, перед нами открывается одно из самых ярких откровений Мироздания, что все эти "монстры": радиогалактики, квазары и другие аномальные объекты излучений - ничто иное, как обычные галактики, оптическое

Из книги автора

§ 5.11 Космические лучи - путь к звёздам …Планета есть колыбель разума, но нельзя вечно жить в колыбели. …Человечество не останется вечно на Земле, но в погоне за светом и пространством сначала робко проникнет за пределы атмосферы, а затем завоюет себе всё околосолнечное

Из книги автора

Из книги автора

ДЛЯ ЧЕГО НУЖНЫ ОРБИТАЛЬНЫЕ КОСМИЧЕСКИЕ СТАНЦИИ? Обитаемые космические станции как искусственные спутники Земли будут двигаться по орбитам вне атмосферы Земли. В связи с этим все научные и технические задачи, которые будут решать околоземные орбитальные станции, можно

Из книги автора

Александр Владимирович Фролов Новые космические технологии Существует только один истинный закон – тот, который помогает стать свободным. Ричард Бах «Чайка по имени Джонатан Ливингстон»