Психогенетика: как гены влияют на интеллект, характер и психическое здоровье. Хромосомная теория наследственности

Психогенетика: как гены влияют на интеллект, характер и психическое здоровье. Хромосомная теория наследственности
Психогенетика: как гены влияют на интеллект, характер и психическое здоровье. Хромосомная теория наследственности

В 1906 году У. Бэтсон и Р. Пеннет, проводя скрещивание растений душистого горошка и анализируя наследование формы пыльцы и окраски цветков, обнаружили, что эти признаки не дают независимого распределения в потомстве, гибриды всегда повторяли признаки родительских форм. Стало ясно, что не для всех признаков характерно независимое распределение в потомстве и свободное комбинирование.

Каждый организм имеет огромное количество признаков, а число хромосом невелико. Следовательно, каждая хромосома несет не один ген, а целую группу генов, отвечающих за развитие разных признаков. Изучением наследования признаков, гены которых локализованы в одной хромосоме, занимался Т. Морган . Если Мендель проводил свои опыты на горохе, то для Моргана основным объектом стала плодовая мушка дрозофила.

Дрозофила каждые две недели при температуре 25 °С дает многочисленное потомство. Самец и самка внешне хорошо различимы — у самца брюшко меньше и темнее. Они имеют всего 8 хромосом в диплоидном наборе, достаточно легко размножаются в пробирках на недорогой питательной среде.

Скрещивая мушку дрозофилу с серым телом и нормальными крыльями с мушкой, имеющей темную окраску тела и зачаточные крылья, в первом поколении Морган получал гибриды, имеющие серое тело и нормальные крылья (ген, определяющий серую окраску брюшка, доминирует над темной окраской, а ген, обусловливающий развитие нормальных крыльев, — над геном недоразвитых). При проведении анализирующего скрещивания самки F 1 с самцом, имевшим рецессивные признаки, теоретически ожидалось получить потомство с комбинациями этих признаков в соотношении 1:1:1:1. Однако в потомстве явно преобладали особи с признаками родительских форм (41,5% — серые длиннокрылые и 41,5% — черные с зачаточными крыльями), и лишь незначительная часть мушек имела иное, чем у родителей, сочетание признаков (8,5% — черные длиннокрылые и 8,5% — серые с зачаточными крыльями). Такие результаты могли быть получены только в том случае, если гены, отвечающие за окраску тела и форму крыльев, находятся в одной хромосоме.

1 — некроссоверные гаметы; 2 — кроссоверные гаметы.

Если гены окраски тела и формы крыльев локализованы в одной хромосоме, то при данном скрещивании должны были получиться две группы особей, повторяющие признаки родительских форм, так как материнский организм должен образовывать гаметы только двух типов — АВ и аb , а отцовский — один тип — аb . Следовательно, в потомстве должны образовываться две группы особей, имеющих генотип ААВВ и ааbb . Однако в потомстве появляются особи (пусть и в незначительном количестве) с перекомбинированными признаками, то есть имеющие генотип Ааbb и ааВb . Для того, чтобы объяснить это, необходимо вспомнить механизм образования половых клеток — мейоз. В профазе первого мейотического деления гомологичные хромосомы конъюгируют, и в этот момент между ними может произойти обмен участками. В результате кроссинговера в некоторых клетках происходит обмен участками хромосом между генами А и В , появляются гаметы Аb и аВ , и, как следствие, в потомстве образуются четыре группы фенотипов, как при свободном комбинировании генов. Но, поскольку кроссинговер происходит при образовании небольшой части гамет, числовое соотношение фенотипов не соответствует соотношению 1:1:1:1.

Группа сцепления — гены, локализованные в одной хромосоме и наследующиеся совместно. Количество групп сцепления соответствует гаплоидному набору хромосом.

Сцепленное наследование — наследование признаков, гены которых локализованы в одной хромосоме. Сила сцепления между генами зависит от расстояния между ними: чем дальше гены располагаются друг от друга, тем выше частота кроссинговера и наоборот. Полное сцепление — разновидность сцепленного наследования, при которой гены анализируемых признаков располагаются так близко друг к другу, что кроссинговер между ними становится невозможным. Неполное сцепление — разновидность сцепленного наследования, при которой гены анализируемых признаков располагаются на некотором расстоянии друг от друга, что делает возможным кроссинговер между ними.

Независимое наследование — наследование признаков, гены которых локализованы в разных парах гомологичных хромосом.

Некроссоверные гаметы — гаметы, в процессе образования которых кроссинговер не произошел.

Нерекомбинанты — гибридные особи, у которых такое же сочетание признаков, как и у родителей.

Рекомбинанты — гибридные особи, имеющие иное сочетание признаков, чем у родителей.

Расстояние между генами измеряется в морганидах — условных единицах, соответствующих проценту кроссоверных гамет или проценту рекомбинантов. Например, расстояние между генами серой окраски тела и длинных крыльев (также черной окраски тела и зачаточных крыльев) у дрозофилы равно 17%, или 17 морганидам.

У дигетерозигот доминантные гены могут располагаться или в одной хромосоме (цис-фаза ), или в разных (транс-фаза ).

1 — Механизм цис-фазы (некроссоверные гаметы); 2 — механизм транс-фазы (некроссоверные гаметы).

Результатом исследований Т. Моргана стало создание им хромосомной теории наследственности :

  1. гены располагаются в хромосомах; различные хромосомы содержат неодинаковое число генов; набор генов каждой из негомологичных хромосом уникален;
  2. каждый ген имеет определенное место (локус) в хромосоме; в идентичных локусах гомологичных хромосом находятся аллельные гены;
  3. гены расположены в хромосомах в определенной линейной последовательности;
  4. гены, локализованные в одной хромосоме, наследуются совместно, образуя группу сцепления; число групп сцепления равно гаплоидному набору хромосом и постоянно для каждого вида организмов;
  5. сцепление генов может нарушаться в процессе кроссинговера, что приводит к образованию рекомбинантных хромосом; частота кроссинговера зависит от расстояния между генами: чем больше расстояние, тем больше величина кроссинговера;
  6. каждый вид имеет характерный только для него набор хромосом — кариотип.

    Перейти к лекции №17 «Основные понятия генетики. Законы Менделя»

Жизнь каждого человека начинается с момента слияния двух половых клеток, материнской и отцовской гамет, содержащих хромосомы. Хромосомы несут гены, и каждая из них - свой собственный набор, они перераспределяются случайным образом, образуя новые сочетания, передает Day.Az со ссылкой на Vmirechudes.com . Так получаемся непохожие друг на друга мы!

Современный американский исследователь, один из ведущих специалистов в области генетики поведения, Роберт Пломин, утверждает, что каждый из нас - это уникальный генетический эксперимент, который никогда больше не повторится. Даже вероятность того, что дети одних и тех же родителей получат одинаковый набор генов, равняется одному шансу на 64 триллиона возможностей. Исключение составляют близнецы, но и там нет стопроцентного совпадения по генетическому набору.

Не так давно еще бытовало мнение, что по материнской линии передается здоровье, а по отцовской - интеллект, но пытливые умы ученых не останавливались на исследованиях. И вот какие интересные выводы они получили: доказано, что среди женщин преобладает средний уровень интеллекта, а среди мужчин часто встречаются отклонения и в ту и в другую сторону. Почему так происходит? Оказывается, ученые провели первое масштабное генетическое исследование на этот счет и пришли к выводу, что сила интеллекта наследуется по линии как раз матери, а не отца, как считалось ранее. Так что гендерные стереотипы, существовавшие на протяжении долгих веков, теперь обязаны исчезнуть.

Именно гены матери, как выясняется, отвечают непосредственно за развитие коры головного мозга, а отца - за развитие лимбической системы. Иными словами, от мамы вы взяли интеллект, от отца - свое типичное эмоциональное состояние. Более того, некоторые другие исследования показали, что люди наследуют интеллект матери, потому что гены интеллекта расположены на хромосоме X. Гены, "транслирующие" по наследству дары разумности, расположены в X-хромосомах. У женщин таких хромосом две (XX), а у мужчин - всего одна (XY), поэтому гены, ответственные за интеллект, у женщин более активны, а папа-гений может передать свой высокий IQ дочери, но никак не сыну.

Интеллект передается по Х хромосоме. Если рождается дочь, то интеллект от гения -отца однозначно передастся ей в гены вместе с той же хромосомой Х, которая определяет ее пол. Ведь у неё будет две Х хромосомы: одна - отцовская, а вторая - какая-то одна из материнских. Потому сыновья, которые проявили недюжинные способности и таланты - только своей матери обязаны за этот дар! Но есть и другие факторы Недавно исследователи из Университета Ульма в Германии обнаружили, что генетика не единственная причина развитого интеллекта. На то, умны вы или нет, оказали влияние и другие факторы. Главный такой дополнительный фактор - степень привязанности к матери, особенно в возрасте до двух лет. Дети, которые регулярно играли с ними в сложные игры, требующие распознавания символов, впоследствии вырастали в более умных взрослых, чем большинство их сверстников.

Второй фактор - это любовь. Если эмоциональные потребности детей в возрасте до 13 лет удовлетворялись почти полностью, в их гиппокампе образовывалось на 10% больше клеток, чем у тех, кто эмоционально был отдален от матери. Теперь ученые говорят, что интеллект лишь на 50% зависит от генетики, а в остальном - от окружающей среды. И еще: даже если ваш ребенок умен от природы, его навыки решать проблемы нужно развивать. Причем задачи по мере взросления должны становиться все сложнее. Иначе, каким бы не был его "исходный" интеллект, с возрастом он его потеряет.

в науке является вопрос о том, что представляет собой интеллект и в какой степени он зависит от генов. Новое исследование, опубликованное в журнале Nature Genetics , смогло выявить ряд генов, которые отвечают за развитие интеллекта.

Это ведёт к сложности интерпретации ОНП из полногеномного поиска ассоциаций, поэтому впоследствии авторы дополнили свой анализ полногеномным анализом генных ассоциаций (genome-wide gene association analysis or GWGAS), который подсчитывает влияние множественных ОНП в генах и может определить конкретные связанные гены.

Затем они объединили оба типа исследований, чтобы укрепить свою уверенность в определении генов, связанных с интеллектом. Эта работа привела к выделению 52 потенциальных генов, связанных с интеллектуальными способностями человека.

Какие гены отвечают за интеллект

Исследователи обнаружили, что связанные с интеллектом гены те же самые, что и играющие роль в регулировании развития нервной системы и апоптоза (нормальной формы клеточной смерти, необходимой для развития).

Наиболее значительный ОНП был найден в гене FOXO3, отвечающем за передачу сигналов, запускающих апоптоз. Самая сильная связь оказалась у гена CSE1L, участвующего в апоптозе и клеточном размножении.

Значит ли все это, что уровень интеллекта человека зависит от молекулярных механизмов, обеспечивающих развитие и защиту нервной системы человека в течение всей жизни? Возможно.

Возможно ли также объяснить интеллект через генетику? Эта работа показывает, что да.

Тем не менее, есть основания считать, что интеллект - это очень сложное качество, и даже если генетика играет какую-то роль, такие факторы окружающей среды, как обучение, здоровый образ жизни, доступ к высшему образованию, воздействие стимулирующих обстоятельств или окружения могут иметь такое же или даже большее значение для развития и формирования интеллекта.

Наибольший интерес для эмбриологов представляют гены, которые "специально" отвечают за развитие. У таких генов есть несколько признаков. Во-первых, их продукты должны обнаруживаться только на определенных стадиях и (или) в определенных участках зародыша. Во- вторых, их мутации должны приводить к остановке развития на строго определенной стадии или к специфическим изменениям хода развития.

Интенсивное изучение таких мутаций началось уже в начале ХХ века, но прогресс в этой области был связан с успехами молекулярной биологии за последние 25 лет. Благодаря им удалось найти гены, отвечающие за становление пространственной организации - плана строения животных, и многое понять в механизмах их работы. Это было одним из главных достижений в биологии за последние годы, отмеченных Нобелевской премией в области физиологии и медицины за 1995 г. Главным объектом генетиков служили немногие виды животных - нематода Caenorhabditis , плодовая мушка дрозофила и мышь. На дрозофиле были получены наиболее полные результаты, позволяющие понять, как гены регулируют план строения организма. Первыми в действие вступают гены с материнским эффектом (см. " ДРОБЛЕНИЕ ЗИГОТЫ "). Их продукты начинают накапливаться в яйцеклетке еще до оплодотворения, и именно они определяют передне-заднюю и спинно- брюшную полярность зародыша. Таких генов у дрозофилы известно более 20-ти.

Разберем механизм их действия на примере гена bicoid . Его мутация вызывает развитие у гомозиготных самок личинок, у которых отсутствует голова и грудь, а на их месте развивается задний конец брюшка. иРНК этого гена локализована только в самой передней части яйца. Однако его белковый продукт образует на стадии ранней бластулы (когда еще нет клеточных границ) устойчивый градиент с наибольшей концентрацией в передней трети и ее падением в направлении назад. Этот белок вскоре проникает внутрь ядер зародыша. Продукты нескольких других генов отвечают за правильный градиент белка bicoid. Их мутации делают градиент более пологим, и тогда у личинок отсутствуют передние части головы, а челюстной и грудной отделы удлиняются.

Следующая группа генов, которые активируются ходе развития - так называемые gap-гены (от англ. gap - щель, промежуток), один из них - ген hunchback . Его активность необходима для развития ротовых структур и груди. У мутантов по этому гену сразу за передней частью головы начинается брюшко, т.е. на месте большого участка зародыша имеется "щель". Было показано, что продукт гена bicoid связывается с промотором гена hunchback и активирует его на стадии поздней бластулы.

В задней части зародыша другие гены, напротив, ингибируют трансляцию белка гена hunchback. Этот белок, необходимый для развития передних структур, сам подавляет проявление генов, необходимых для развития брюшного отдела.

Следующими вступают в действие гены, которые называются pair-rule-гены . Для их включения необходима нормальная работа генов с материнским эффектом (см. " ДРОБЛЕНИЕ ЗИГОТЫ ") и gap-генов . Картина работы pair-rule-генов наиболее подробно изучена на примере гена fushi tarazu (ftz) . Продукт этого гена выявляется на стадии, когда еще нет клеточных границ, в виде семи полосок, причем ширина каждой из них соответствует всего трем клеточным диаметрам ( рис. 177). Эти полоски соответствуют зачаткам задней половины одного сегмента и передней половины другого (во всех сегментах, начиная с нижнечелюстного). Такие участки из половин двух сегментов, важные для развития сегментации, назвали парасегментами. Если из-за мутации продукт гена ftz не образуется, то клетки, лишенные его, гибнут и у зародыша отсутствуют соответствующие участки сегментов.