Процессы в ts диаграмме. Pv- и Ts- диаграммы, их свойства. Истечение газа из сопла

Процессы в ts диаграмме. Pv- и Ts- диаграммы, их свойства. Истечение газа из сопла
Процессы в ts диаграмме. Pv- и Ts- диаграммы, их свойства. Истечение газа из сопла

Работа в термодинамике, так же как и в механике, определяется произведени­ем действующей на рабочее тело силы на путь ее действия. Рассмотрим газ массой М и объемом V , заключенный в эластичную оболочку с поверхностью F (рисунок 2.1). Если газу сообщить некоторое количество теплоты, то он будет расширяться, совершая при этом работу против внешнего давления р , оказываемого на него средой. Газ дей­ствует на каждый элемент оболочки dF с силой, равной pdF и, перемещая ее по нормали к поверхности на расстояние dn , совершает элементарную работу pdFdn .

Рис. 2.1 – К определению работы расширения

Общую работу, совершенную в течение бесконечно малого процесса, получим, интегрируя данное выражение по всей поверхности F оболочки:

.

Из рисунок 2.1 видно, что изменение объема dV выражается в виде интеграла по поверхности: , следовательно

δL = pdV. (2.14)

При конечном изменении объема работа против сил внешнего давления, называе­мая работой расширения, равна

Из (2.14) следует, что δL и dV всегда имеют одинаковые знаки:

если dV > 0, то и δL > 0, т.е. при расширении работа тела положительна, при этом тело само совершает работу;

если же dV < 0, то и δL< 0, т. е. при сжатии работа тела отрицательна: это означает, что не тело совершает работу, а на его сжатие затрачивается работа извне.

Единицей измерения работы в СИ яв­ляется джоуль (Дж).

Отнеся работу расширения к 1 кг массы рабочего тела, получим

l = L/M; δl = δL/М = pdV/M = pd(V/M) = pdv. (2.16)

Величина l, представляющая собой удельную работу, совершаемую систе­мой, содержащей 1 кг газа, равна

Поскольку в общем случае р – вели­чина переменная, то интегрирование воз­можно лишь тогда, когда известен закон изменения давления p = p(v).

Формулы (2.14) – (2.16) справедливы только для равновесных процессов, при которых давление рабочего тела равно давлению окружающей среды.

В термодинамике для исследования равновесных процессов широко исполь­зуют рv – диаграмму, в которой осью аб­сцисс служит удельный объем, а осью ординат – давление. Поскольку состоя­ние термодинамической системы опреде­ляется двумя параметрами, то на рv – диаграмме оно изображается точкой. На рисунке 2.2 точка 1 соответствует начально­му состоянию системы, точка 2 – конеч­ному, а линия 12 – процессу расшире­ния рабочего тела от v 1 до v 2 .

При бесконечно малом изменении объема dv площадь заштрихованной вертикальной полоски равна pdv = δl, следовательно, работа процесса 12 изо­бражается площадью, ограниченной кри­вой процесса, осью абсцисс и крайними ординатами. Таким образом, работа из­менения объема эквивалентна площади под кривой процесса в диаграмме рv .


Рис. 2.2 – Графическое изображение работы в рv – координтах

Каждому пути перехода системы из состояния 1 в состояние 2 (например, 12, 1а2 или 1b2) соответствует своя работа расширения: l 1 b 2 >l 1 a 2 >l 12 Следова­тельно, работа зависит от характера термодинамического процесса, а не явля­ется функцией только исходного и ко­нечного состояний системы. С другой стороны, ∫pdv зависит от пути интегри­рования и, следовательно, элементарная работа δl не является полным диффе­ренциалом.

Работа всегда связана с перемеще­нием макроскопических тел в простран­стве, например перемещением поршня, деформацией оболочки, поэтому она ха­рактеризует упорядоченную (макрофизическую) форму передачи энергии от од­ного тела к другому и является мерой переданной энергии.

Поскольку величина δl пропорцио­нальна увеличению объема, то в качестве рабочих тел, предназначенных для пре­образования тепловой энергии в механи­ческую, целесообразно выбирать такие, которые обладают способностью значи­тельно увеличивать свой объем. Этим качеством обладают газы и пары жидко­стей. Поэтому, например, на тепловых электрических станциях рабочим телом служат пары воды, а в двигателях внут­реннего сгорания – газообразные про­дукты сгорания того или иного топлива.

2.4 Работа и теплота

Выше отмечалось, что при взаимодействии термодинамической системы с окружающей средой происходит обмен энергией, причем один из способов ее передачи – работа, а другой – теплота.

Хотя работа L и количество теплоты Q имеют размерность энергии, они не являются видами энергии. В отличие от энергии, которая является параметром состояния системы, работа и теплота зависят от пути перехода системы от одного состояния в другое. Они представляют две формы передачи энергии от одной системы (или тела) к другой.

В первом случае имеет место макрофизическая форма обмена энергией, которая обусловлена механическим воздействием одной системы на другую, сопровождаемым видимым перемещением дру­гого тела (например, поршня в цилиндре двигателя).

Во втором случае осуществлена микрофизическая (т.е. на моле­кулярном уровне) форма передачи энергии. Мера количества пе­реданной энергии – количество теплоты. Таким образом, работа и теплота – энергетические характеристики процессов механическо­го и теплового взаимодействия системы с окружающей средой. Эти два способа передачи энергии эквивалентны, что вытекает из зако­на сохранения энергии, но неравноценны. Работа может непосред­ственно преобразовываться в теплоту – одно тело передает при тепловом контакте энергию другому. Количество же теплоты Q непосредственно расходуется только на изменение внутренней, энергии системы. При превращении теплоты в работу от одного тела – источника теплоты (ИТ) теплота передается другому – рабо­чему телу (РТ), а от него энергия в виде работы передается третьему телу – объекту работы (ОР).

Следует подчеркнуть, что если мы записываем уравнение термодинамики, то входящие в уравнения L и Q означают энергию, полученную соответственно макро– или микрофизическим спосо­бом.

Читайте также:
  1. A) Сервис Параметры Вид Отображать Строка состояния команд меню
  2. I. Декларация-заявка на проведение сертификации системы качества II. Исходные данные для предварительной оценки состояния производства
  3. А1. УЧЕТ ФАКТОРА ВРЕМЕНИ В ФИНАНСОВО-ЭКОНОМИЧЕСКИХ РАСЧЕТАХ. НАРАЩЕНИЕ И ДИСКОНТИРОВАНИЕ
  4. Агрегатные состояния вещества. Характер теплового движения в этих состояниях. Особенности теплового движения в различных агрегатных состояниях вещества.
  5. Анализ движения, технического состояния и эффективности использования основных средств
  6. Анализ использования чистой прибыли проводится с использованием метода вертикального и горизонтального анализа, для чего показатели группируются в таблицу, подобную таблице 20.
  7. Анализ показателей движения, состояния и использования ОС.
  8. Анализ состояния и использования ОПФ.Показатели использования средств труда

Водяной пар получают в паровых котлах, различных по конструк­ции и производительности. Процесс парообразования в котлах обычно происходит при постоянном давлении, т.е. при p = const.

Pv-диаграмма.

Рассмотрим особенности процесса парообразования. Предположим, что 1 кг воды при температуре 0°С находится в цилиндрическом сосуде с поршнем, на который действует груз, обусловливающий давление p 1 (рис.1.) . При температуре 0°С принятое количество воды занимает объем v 0 . На диаграмме р-v (рис.2) это состояние воды отобразится точкой а 1 . Начнем постепенно, сохраняя неизменным давление р 1 , нагревать воду, не снимая с нее поршня и груза. Температура ее при этом будет повышаться, а объем незначительно возрастать. При некоторой темпе­ратуре t н1 (температура кипения) вода закипит.

Дальнейшее сообщение тепла не повышает температуру кипящей воды, однако оно вызывает постепенное превра­щение воды в пар до тех пор, пока вся вода не испарится и в сосуде не останется один пар. Начало процесса кипения – объем v’ 1 ; состояние пара – v 1 ’’. Процесс нагрева во­ды от 0 до t н1 будет отображаться на диаграмме изобарой а 1 - v’ 1 .

Обе фазы - жидкая и газообразная - в каждый данный момент на­ходятся во взаимном равновесии. Пар, находящийся в равновесии с жидкостью, из которой он обра­зуется, называют насыщенным паром ; если он не содержит жид­кой фазы, его называют сухим насыщенным ; если же он содержит в себе и жидкую фазу в виде мелкодисперсных частиц, то его называют влажным насыщенным и просто насыщенным паром.

Чтобы судить о содержании во влажном паре воды и сухого насы­щенного пара, в термодинамике применяют понятие о степени су­хости или просто сухости пара. Под степенью сухости (сухостью) пара понимают массу сухого пара, содержащегося в единице массы влажно­го пара, т. е пароводяной смеси. Степень сухости пара обозначают бук­вой х и она выражает долю сухого насыщенного пара во влажном паре. Очевидно, величина (1-х) представляет собой массу воды в единице мас­сы пароводяной смеси. Эту величину называют влажностью пара . По мере парообразования величи­на степени сухости пара возрастет от 0 до 1, а влажность пара умень­шается от 1 до 0.

Продолжим рассмотрение процесса. Если сухому насыщенному па­ру, занимающему в сосуде объем v 1 ", продолжать сообщать тепло, то при неизменном давлении температура его и объем будут возрастать. Повышение температуры пара сверх температуры насыщения называют перегревом пара . Перегрев пара определяется разностью темпера­тур перегретого и насыщенного пара, т.е. величиной ∆t = t - t н1 . На рис. 1, г показано положение поршня, при котором пар перегрет до температуры, которой соответствует удельный объем v 1 . На р-v диаграмме процесс перегрева пара отобра­жается отрезком v 1 "- v 1 .



T-s диаграмма.

Рассмотрим, как отображаются процессы нагрева воды, парообразования и перегрева пара в системе координат T-s, называемой T-s диаграммой.

Для давления р 1 (рис.3) кривая нагрева воды от 0 ºС ограничивается отрезком а-b 1 , на котором точка b 1 соответствует температуре кипения t н1 . По достижении этой температуры процесс парообразования из изобарного переходит в изобарно-изотермический, который на T-s диаграмме отображается горизонтальной линией.

Очевидно, для давлений p 2 < p 3 < p 4 и т.д., превышающих p 1 , точ­ки b 2 , b 3 , b 4 и т.д., располагающиеся на ниж­ней пограничной кривой а-Ки соответствующие температурам ки­пения t н2 , t н3 , t н4 (на рисунке показаны соответствующие абсолютные температуры), будут помещаться выше точки b 1 и притом тем выше, чем больше давление, при котором происходит процесс нагрева воды.



Длины отрезков b 1 -с 1 , b 2 -с 2 , b 3 -с 3 и т.д., харак­теризующие изменения энт­ропии в процессе парообразования, определяются величиной r/T н.

Точки с 2 , с 3 , с 4 и т. д., ото­бражающие окончание про­цесса парообразования, в со­вокупности образуют верх­нюю пограничную кривую с 1 -К.Обе пограничные кривые сходятся в критической точке К.

Область диаграммы, заключенная между изобарой а-с и по­граничными кривыми, соответствует различным состояниям влажного пара.

Линия а-а 2 отоб­ражает процесс парообразования при давлении, превышающем критическое. Точки d 1 , d 2 и т.д. на кривых перегрева пара определяются тем­пературами перегрева (Т 1 , Т 2 и т.д.).

Площади, расположенные под соответствующими участками этих линий, выражают количество тепла, сообщен­ного воде (или пару) в этих процессах. Сообразно с этим, если пренебречь величиной pv 0 , то применительно к 1 кг рабочего тела площадь а-b 1 -1-0соответству­ет величине h", площадь b 1 -с 1 -2-1– величине rи площадь с 1 -d 1 -3-2 величине q = c рт (t 1 – t н). Суммарная площадь а-b 1 -с 1 -d 1 -3-0 соответствует сумме h" + r + c рт (t 1 – t н) = h, т. е. энтальпии пара, перегрето­го до температуры t 1 .

Диаграмма h-S водяного пара.

Для практиче­ских расчетов обычно пользуются h-S диаграммой водяного пара. Диаграмма (рис.4) представляет собой график, построен­ный в системе координат h-S, на котором нанесен ряд изобар, изохор, изотерм, пограничные кривые и линии постоянной степени сухости пара.

Эта диаграмма строится следующим образом. Задаваясь для дан­ного давления различными значениями энтропии, по таблицам находят соответствующие значения энтальпии и по ним в системе координат h-Sв масштабе строят по точкам соответствующую кривую давления - изобару. Поступая далее таким же образом, строят изобары для других давлений.

Пограничные кривые строят по точкам, находя для различных дав­лений по таблицам значения s" и s" и соответствующие им значе­ния h"и h".

Чтобы построить изотерму для какой-либо температуры, нужно найти по таблицам ряд значений h и Sдля различных давлений при вы­бранной температуре.

Изохоры на диаграммах T-s и h-S наносят, пользуясь таблицами пара, находя по ним для одних и тех же удельных объемов пара соот­ветствующие значения s и Т. На рис. 3. показана схематически и без изохор диаграмма h-S, построен­ная от начала координат. Поскольку диаграммой h-S пользуются при тепловых расчетах, в которых пользо­ваться частью диаграммы, охватывающей область сильно влажного пара (х < 0,5) не приходится, для практических целей обычно левую нижнюю часть при построении диаграммы от­брасывают.

Изображенная на рис. 4. изобара О-С, соответствующая давле­нию в тройной точке, проходит через начало координат под наименьшим наклоном и снизу ограничивает область влажного пара. Область диаг­раммы, расположенная под этой изобарой, соответствует различным со­стояниям смеси пара и льда; область, расположенная между изобарой О-С и пограничными кривыми, - различным состояниям влажного на­сыщенного пара; область над верхней пограничной кривой – состояниям перегретого пара и область над нижней пограничной кривой состояниям воды.

T-S-, P-v- и h-s-диаграммы состояния водяного пара применяются в инженерных расчетах паросиловых установок, паровых турбин.

Паросиловая установка (ПСУ) предназначена для выработки пара и эл.энергии. ПСУ представляют циклом Ренкина. На диаграмме p-v и T-S этот цикл представлен на (рис.5и6) соответственно.

1-2 – адиабатное расширение пара в паровой турбине до давления в конденсаторе p 2 ;

2-2 " – конденсация пара в конденсаторе, отвод тепла при p 2 = const.

Т.к. при давлениях, применяемых обычно в теплотехнике, изменением объема воды при её сжатии можно пренебречь, то процесс адиабатического сжатия воды в насосе происходит практически при постоянном объеме воды и может быть представлен изохорой 2 " -3.

3-4 – процесс нагревания воды в котле при p 1 = const до температуры кипения;

4-5 – парообразование;5-1 – перегрев пара в пароперегревателе.

Процессы нагревания воды до кипения и парообразование происходят при постоянном давлении (P = const, T = const) .Поскольку процессы подвода и отвода теплоты в рассмотренном цикле осуществляется по изобарам, а в изобарном процессе количество подведенной (отведенной) теплоты = разности энтальпий раб.тела в начале и конце процесса:

h 1 – энтальпия перегретого пара на выходе из котла; h 4 – энтальпия воды на входе в котел;

h 2 – энтальпия влажного пара на выходе из турбины; h 3 – энтальпия конденсата на выходе из конденсатора.

Процесс расширения пара турбинной установки удобно рассматривать в h-S диаграмме.

Каждое из этих уравнений содержит два множителя. Один характеризует качество или напряженность энергии (ω2 − квадрат скорости, H – высота подъема груза, T – температура, p −давление), а второй – выражает количество или ёмкость тела по отношению к данной энергии (m масса тела, V удельный объем, S энтропия). Первый множитель является интенсивным фактором, а второй – экстенсивным. То есть энтропия представляет собой емкость термодинамической системы по отношению к тепловой напряженности.

Клаузиус дал формулировки первого и второго законов термодинамики.

    Энергия Вселенной постоянна.

    Энтропия Вселенной стремится к максимуму.

Таким образом, это должно привести к тепловой смерти Вселенной, когда температура выровняется. Но это противоречит, тому, что закон возрастания энтропии получен для изолированной системы.

TS – диаграмма.

На этой диаграмме по оси ординат откладывается температура, а по оси абсцисс – энтропия.

Равновесное состояние в TS − диаграмме изображаются точками с координатами, соответствующими значениям температуры и энтропии.

Обратимый термодинамический процесс изменения состояния рабочего тела от начального состояния 1 до конечного состояния 2 изображается на TS диаграмме непрерывной кривой, проходящей между этими точками.

Площадь abdc равна TdS = dq , т.е. выражает элементарное количество теплоты, получаемой или отдаваемой системой в обратимом процессе.

Площадь под кривой 1-2 равна

То есть площадь под кривой в TS диаграмме, представляет собой теплоту, подведенную к системе или отведенную от нее.

Поэтому TS диаграмму называют тепловой.

Проведем в произвольной точке M на кривой 1-2 касательную к этой кривой

Величина представляет собой истинную теплоемкость процесса.

Газовые процессы в TS − диаграмме.

    Изотермический процесс .

При изотермическом процессе T = const . Поэтому TS − диаграмме он изображается прямой линией, параллельной оси абсцисс.

С учетом того, что dT =0 , зависимости изменения энтропии идеального газа в изотермическом процессе примут вид

(уходит слагаемое в правой части)

Процесс 1-2 – это процесс, в котором энтропия увеличивается, а следовательно, к газу подводится теплота и газ совершает работу расширения, эквивалентную этой теплоте.

Процесс2-1− это процесс сжатия, в котором теплота, эквивалентная работе сжатия, отводится от газа и энтропия уменьшается

Площадь фигуры S 1 12 S 2 соответствует количеству теплоты q , сообщаемому газу, и одновременно работе l (изотермический процесс)

    Адиабатный процесс

В адиабатном процессе q =0 и dq =0, а следовательно dS =0.

Следовательно, в адиабатном процессе S = const и в TS − диаграмме адиабатный процесс изображается прямой линией, параллельной оси T .

Поскольку в адиабатном процессе S = const ,то адиабатные обратимые процессы называют также изоэнтропными.

При адиабатном сжатии температура рабочего тела повышается, а при расширении понижается. Поэтому процесс1-2 – это процесс сжатия, а процесс 2-1 – это расширение.

Из уравнения

(3)

При k = const получим

Для обратимого адиабатного процесса S 1 = S 2 = const , тогда из (*)

− уравнение адиабаты в координатах p и V .

    Изохорный процесс

Для изохорного процесса V = const , dV =0.

При постоянной теплоемкости (из ур. (1))

−вид на TS – диаграмме

Подкасательная к кривой процесса в любой её точке определяет значение истинной теплоёмкости C V .

Подкасательная будет положительной только в том случае, если кривая будет обращена выпуклостью вниз.

Площадь под кривой процесса 1-2 на TS – диаграмме дает в масштабе количество подведенной (или отведенной в процессе 2-1) теплоты q , равное изменению внутренней энергии U 2 - U 1 .

    Изобарный процесс

В изобарном процессе давление постоянное p = const

В этом случае

из (2)

Следовательно, при p = const как и при V = const изобара является логарифмической кривой, поднимается следа направо и обращена выпуклостью вниз.

Подкасательная к кривой 1-2 в любой её точке дает значения истинной теплоёмкости C p .

Площадь под кривой дает кол-во теплоты q , которая сообщается газу при p = const , равное изменению энтальпии i 2 - i 1 .

    Политропный процесс

В политропном процессе.Теплоёмкость в этом процессе

Отсюда, для конечного изменения состояния газа

Политропный процесс на TS – диаграмме изображается кривой, расположение которой зависит от показателя n .

    Круговой процесс. Цикл Карно.

Изобразим в TS – диаграмме произвольный обратимый цикл 1 a 2 b 1 .

В процессе 1 a 2 рабочее тело получает кол-во теплоты q 1 , численно равное площади под кривой 1 a 2, а в процессе 2-b -1 отдает кол-во теплоты q 2 , численно равное площади под кривой 2-b -1.

Часть теплоты

переходит в работу цикла l (∆ u =0 в цикле).

Работа цикла положительна, если цикл проходит по часовой стрелке и отрицательна, если против часовой стрелки (направление цикла в pV и TS − диаграммах одинакова).

Термический к.п.д. кругового процесса

Изменение энтропии в любом цикле равно нулю.

Цикл Карно состоит из двух изотерм и двух адиабат. В TS – диаграмме он будет изображаться в виде прямоугольника (горизонтальные линии – изотермы, вертикальные – адиабаты)


Количество теплоты, подведенное к рабочему телу, числено равно площади прямоугольника 12S 2 S 1 :

Количество теплоты, отведенное к холодильнику, соответствует площади прямоугольника 34S 1 S 2 :

Теплота, эквивалентная работе цикла, равная площади цикла

Термический к.п.д. цикла

Для обратного цикла (рис. справа)

Холодильный коэффициент обратного цикла

Среднеинтегральная температура

В произвольном обратимом цикле подвод и отвод теплоты происходит при переменных температурах. Для упрощения термодинамических исследований вводится понятие среднеинтегральной температуры.

Рассмотрим произвольный политропный процесс в TS – диаграмме, в котором к рабочему телу подводится теплота q (процесс 1-2).

Под среднеинтегральной температурой рабочего тела в процессе 1-2 понимается температура, которая равна высоте прямоугольника abdc равновеликого площади a 12 b под кривой процесса 1-2, т.е

Поскольку

а отрезок

Таким образом, среднеинтегральная температура газа для любого процесса равна отношению кол-ва, теплоты, сообщаемого газу или отбираемого от него, к изменению энтропии.

Для любого политропного процесса

и среднеинтегральная температура (из (*))

Отсюда видно, что среднеинтегральная температура в любом политропном процессе зависит только от начальной T 1 и конечной T 2 температур и не зависит от характера процесса.

В произвольном цикле, в котором сжатие и расширение газа являются адиабатными (участки 1-2, 3-4), кол-во теплоты подводимой на участок 2-3

и отводимой на участке 4-1

Тогда термический к.п.д. цикла

,

то есть термический к.п.д. произвольного цикла равен термическому к.п.д. цикла Карно, осуществляемому между среднеинтегральными температурами процессов подводя T 1 Cp и отводя T 2 Cp теплоты.

Обобщенный цикл Карно

Цикл Карно имеет наивысший термический к.п.д. однако возможны и другие циклы, которые при некоторых дополнительных условиях могут иметь термический к.п.д., равный к.п.д. цикла Карно.

Рассмотрим пример такого цикла на рис. показан цикл Карно 1-2-3-4, состоящий, из двух адиабат 2-3, 4-1 и двух изотерм 1-2, 3-4.

Проведём из точки 1 и 2 две эквидистантные кривые 1-6 и 2-5 до пересечения с изотермой T 2 = const и рассмотрим обратный цикл 1-2-5-6, состоящий из двух изотерм и двух эквидистантных кривых 6-1(политропы) и 2-5.

В процессе 1-2 к рабочему телу при температуре T 1 = const подводится кол-во теплоты

В процессе 2-5 от рабочего тела отводится кол-во теплоты, равное площади фигуры 9-5-2-10.

В процессе 5-6 от рабочего тела при T 2 = const отводится кол-во теплоты

В процессе 6-1 к рабочему телу подводится кол-во теплоты q 6-1 , равное площади 7-6-1-8.

Поскольку кривые 1-6, 2-5 эквидистантны, то пл. 7618 = пл. 952-10 следовательно, кол-во теплоты также одинаково.

Это показывает, что промежуточные теплоприемники и теплопередатчики являются только регенераторами теплоты, которые в процессе 2-5 от рабочего тела отбирают теплоту, а в процессе 6-1 отдают её в том же количестве рабочему телу. Таким образом, 1-2-5-6 действительными внешними источниками являются теплопередатчик с температурой T 1 и теплоприёмник с температурой T 2 .

Теплота, превращаемая в цикле в работу

Термический к.п.д. определяется по формуле

То есть, термический к.п.д. рассматриваемого цикла равен к.п.д. цикла Карно.

Термодинамический цикл, в котором отвод теплоты от рабочего тела осуществляется в одном или нескольких процессах цикла для подвода в одном или нескольких процессах называется регенеративным циклом.

В отличие от цикла Карно, для регенеративного цикла необходим промежуточный источник, аккумулирующий теплоту.

Термодинамическая шкала температур

При использовании различных термодинамических тел шкала получается неравномерной из-за особенностей теплового расширения этих веществ.

Второй закон термодинамики позволяет построить шкалу температур, не зависящую от свойств термометрического тела (предложена Кельвином)

В цикле Карно термический к.п.д. не зависит от свойств рабочего тела, а является функцией температур горячего и холодного источника.

Термический к.п.д.

Таким образом, отношение температур рабочего тела может быть определено отношением теплоты. Отсюда следует, что если циклы Карно (рис.) образованы с помощью эквидистантных изотерм, то в этих циклах в работу превращается одинаковое кол-во теплоты.

Пусть изотермы температур T 0 и T k соответствуют температурам таяния льда (0 °С) и кипение воды (100 °С).

В цикле Карно 1234 в работу превращается теплота q равная площади фигуры 1234 . Если разбить эту площадь сеткой равностоящих изотерм на 100 равных частей, в каждом из полученных циклов Карно в работу будет превращаться кол-во теплоты 0,01 q . Температурный интервал между изотермами составит 1 °С.

Аналогично можно построить шкалу, лежащую ниже изотермы с температурой T 0 (0 °С).

За нижнюю точку термодинамической шкалы принята температура, при которой термический к.п.д. цикла Карно =1. Согласно

при T 2 =0 . Более низкой температуры существовать не может, поскольку в этом случае , что противоречит второму закону термодинамики.

Следовательно T =0 (-273.15 ) – это наименьшая возможная температура и она может быть принята за начальную постоянную естественную точку температурной шкалы. Таким образом, абсолютная температура не может иметь отрицательных значений.

Термодинамическая шкала температур получена для идеального газа.

Термодинамический процесс (тепловой процесс) – изменение макроскопического состояния термодинамической системы. Если разница между начальным и конечным состояниями системы бесконечно мала, то такой процесс называют элементарным (инфинитезимальным).

Система, в которой идёт тепловой процесс, называется рабочим телом.

Тепловые процессы можно разделить на равновесные и неравновесные. Равновесным называется процесс, при котором все состояния, через которые проходит система, являются равновесными состояниями. Такой процесс приближённо реализуется в тех случаях, когда изменения происходят достаточно медленно, т. е. процесс является квазистатическим.

Тепловые процессы можно разделить на обратимые и необратимые. Обратимым называется процесс, который можно провести в противоположном направлении через все те же самые промежуточные состояния.

Виды тепловых процессов:

Адиабатный процесс - без теплообмена с окр. средой;

Изохорный процесс - происходящий при постоянном объёме;

Изобарный процесс - происходящий при постоянном давлении;

Изотермический процесс - происходящий при постоянной температуре;

Изоэнтропийный процесс - происходящий при постоянной энтропии;

Изоэнтальпийный процесс - происходящий при постоянной энтальпии;

Политропный процесс - происходящий при постоянной теплоёмкости.

Уравнение Менделеева-Клайперона (уравнение состояния идеального газа):

PV = nRT, где n – число молей газа, P – давление газа, V – объем газа, T – температура газа, R – универсальная газовая постоянная

Изопроцессы идеального газа. Их изображение в P - V диаграммах.

1) Изобарный процесс p = const, V/T = const

2) Изохорный процесс V = const, p/T = const

3) Изотермический процесс T = const, pV = const

Термодинамические процессы. Уравнение Менделеева-Клапейрона. Изопроцессы идеального газа. Их изображение на Р- V диаграммах.

Термодинамические процессы. Совокупность изменяющихся состояний рабочего тела называется термодинамическим процессом.

Идеальный газ - изучаемый в термодинамике воображаемый газ, у которого отсутствуют силы межмолекулярного притяжения н отталкивания, а сами молекулы представляют собой материальные точки, не имеющие объема. Многие реальные газы по своим физическим свойствам весьма близки к идеальному газу.

Основными процессами в термодинамике являются:

    изохорный , протекающий при постоянном объеме;

    изобарный , протекающий при постоянном давлении;

    изотермический , происходящий при постоянной температуре;

    адиабатный , при котором теплообмен с окружающей средой отсутствует;

Изохорный процесс

При изохорном процессе выполняется условие v = const.

Из уравнения состояния идеального газа (pv =RT) следует:

p/T =R/v = const,

т. е. давление газа прямо пропорционально его абсолютной температуре:

p 2 /p 1 =T 2 /T 1 .

Работа расширения в изохорном процессе равна нулю (l = 0), так как объем рабочего тела не меняется (Δv = const).

Количество теплоты, подведенной к рабочему телу в процессе 1-2 при c v

q =c v (T 2 - T 1 ).

Т. к.l = 0, то на основании первого закона термодинамики Δu =q , а значит изменение внутренней энергии можно определить по формуле:

Δu =c v (T 2 - T 1 ).

Изменение энтропии в изохорном процессе определяется по формуле:

s 2 – s 1 = Δs = c v ln(p 2 /p 1 ) = c v ln(T 2 /T 1 ).

Изобарный процесс

Изобарным называется процесс, протекающий при постоянном давлении p = const. Из уравнения состояния идеального газа слуедует:

v / T =R / p =const

v 2 /v 1 =T 2 /T 1 ,

т. е. в изобарном процессе объем газа пропорционален его абсолютной температуре.

Работа будет равна:

l =p (v 2 – v 1 ).

Т. к. pv 1 =RT 1 иpv 2 =RT 2 , то

l =R (T 2 – T 1 ).

Количество теплоты при c p = const определяется по формуле:

q =c p (T 2 – T 1 ).

Изменение энтропии будет равно:

s 2 – s 1 = Δs = c p ln(T 2 /T 1 ).

Изотермический процесс

При изотермическом процессе температура рабочего тела остается постоянной T = const, следовательно:

pv = RT = const

p 2 / p 1 =v 1 / v 2 ,

т. е. давление и объем обратно пропорциональны друг другу, так что при изотермическом сжатии давление газа возрастает, а при расширении – снижается.

Работа процесса будет равна:

l =RT ln (v 2 – v 1 ) =RT ln (p 1 – p 2 ).

Так как температура остается неизменной, то и внутренняя энергия идеального газа в изотермическом процессе остается постоянной (Δu = 0) и вся подводимая к рабочему телу теплота полностью превращается в работу расширения:

q =l.

При изотермическом сжатии от рабочего тела отводится теплота в количестве, равном затраченной на сжатие работе.

Изменение энтропии равно:

s 2 – s 1 = Δs =R ln(p 1 /p 2 ) =R ln(v 2 /v 1 ).

Адиабатный процесс

Адиабатным называется процесс изменения состояния газа, который происзодит без теплообмена с окружающей средой. Так как dq = 0, то уравнение первого закона термодинамики для адиабатного процесса будет иметь вид:

du +p dv = 0

Δu +l = 0,

следовательно

Δu = -l.

В адиабатном процессе работа расширения совершается только за счет расходования внутренней энергии газа, а при сжатии, происходящем за счет действия внешних сил, вся совершаемая ими работа идет на увеличение внутренней энергии газа.

Обозначим теплоемкость в адиабатном процессе через c ад, и условие dq = 0 выразим следующим образом:

dq =c ад dT = 0.

Это условие говорит о том, что теплоемкость в адиабатном процессе равна нулю (c ад = 0).

Известно, что

с p /c v =k

и уравнение кривой адиабатного процесса (адиабаты) в p, v -диаграмме имеет вид:

pv k = const.

В этом выражении k носит названиепоказателя адиабаты (так же ее называют коэффициентом Пуассона).

Значения показателя адиабаты k для некоторых газов:

k воздуха = 1,4

k перегретого пара = 1,3

k выхлопных газов ДВС = 1,33

k насыщенного влажного пара = 1,135

Из предыдущих формул следует:

l = - Δu = c v (T 1 – T 2 );

i 1 – i 2 = c p (T 1 – T 2 ).

Техническая работа адиабатного процесса (l техн) равна разности энтальпий начала и конца процесса (i 1 – i 2 ).

Адиабатный процесс, происходящий без внутреннего трения в рабочем теле, называется изоэнтропийным . ВT, s -диаграмме он изображается вертикальной линией.

Обычно реальные адиабатные процессы протекают при наличии внутреннего трения в рабочем теле, в результате чего всегда выделяется теплота, которая сообщается самому рабочему телу. В таком случае ds > 0, и процесс называетсяреальным адиабатным процессом .

Уравнение Менделеева-Клапейрона

Газы нередко бывают реагентами и продуктами в химических реакциях. Не всегда удается заставить их реагировать между собой при нормальных условиях. Поэтому нужно научиться определять число молей газов в условиях, отличных от нормальных.

Для этого используют уравнение состояния идеального газа (его также называют уравнением Клапейрона-Менделеева):

PV = n RT

где n – число молей газа;

P – давление газа (например, в атм ;

V – объем газа (в литрах);

T – температура газа (в кельвинах);

R – газовая постоянная (0,0821 л·атм /моль·K).

Например, в колбе объемом 2,6 л находится кислород при давлении 2,3 атм и температуре 26 о С. Вопрос: сколько молей O 2 содержится в колбе?

Из газового закона найдем искомое число молей n :

Не следует забывать преобразовывать температуру из градусов Цельсия в кельвины: (273 о С + 26 о С) = 299 K. Вообще говоря, чтобы не ошибиться в подобных вычислениях, нужно внимательно следить за размерностью величин, подставляемых в уравнение Клапейрона-Менделеева. Если давление дается в мм ртутного столба, то нужно перевести его в атмосферы, исходя из соотношения: 1атм = 760 мм рт. ст. Давление, заданное в паскалях (Па), также можно перевести в атмосферы, исходя из того, что 101325 Па = 1атм .

Билет 16

Вывод основного уравнения молекулярно-кинетической теории. Число степеней свободы молекулы. Закон распределения энергии по степеням свободы.

Вывод основного уравнения МКТ.

Число степеней свободы молекулы. Закон распределения энергии по степеням свободы.

Билет 17.

Первое начало термодинамики. Работа газа при изменении объема. Вычислить работу изотермического расширения газа.

Количество теплоты , полученное системой, идёт на изменение её внутренней энергии и совершение работы против внешних сил

Изменение внутренней энергии системы при переходе её из одного состояния в другое равно сумме работы внешних сил и количества теплоты, переданного системе, то есть, оно зависит только от начального и конечного состояния системы и не зависит от способа, которым осуществляется этот переход. В циклическом процессе внутренняя энергия не изменяется.

Работа при изотермическом расширении газа вычисляется как площадь фигуры под графиком процесса.


Билет 18.

Теплоемкость идеального газа.

Если в результате теплообмена телу передается некоторое количество теплоты, то внутренняя энергия тела и его температура изменяются. Количество теплоты Q, необходимое для нагревания 1 кг вещества на 1 К называют удельной теплоемкостью вещества c. c = Q / (mΔT).

где M – молярная масса вещества.

Определенная таким образом теплоемкость не является однозначной характеристикой вещества. Согласно первому закону термодинамики изменение внутренней энергии тела зависит не только от полученного количества теплоты, но и от работы, совершенной телом. В зависимости от условий, при которых осуществлялся процесс теплопередачи, тело могло совершать различную работу. Поэтому одинаковое количество теплоты, переданное телу, могло вызвать различные изменения его внутренней энергии и, следовательно, температуры.

Такая неоднозначность определения теплоемкости характерна только для газообразного вещества. При нагревании жидких и твердых тел их объем практически не изменяется, и работа расширения оказывается равной нулю. Поэтому все количество теплоты, полученное телом, идет на изменение его внутренней энергии. В отличие от жидкостей и твердых тел, газ в процессе теплопередачи может сильно изменять свой объем и совершать работу. Поэтому теплоемкость газообразного вещества зависит от характера термодинамического процесса. Обычно рассматриваются два значения теплоемкости газов: C V – молярная теплоемкость в изохорном процессе (V = const) и C p – молярная теплоемкость в изобарном процессе (p = const).

В процессе при постоянном объеме газ работы не совершает: A = 0. Из первого закона термодинамики для 1 моля газа следует

где ΔV – изменение объема 1 моля идеального газа при изменении его температуры на ΔT. Отсюда следует:

где R – универсальная газовая постоянная. При p = const

Таким образом, соотношение, выражающее связь между молярными теплоемкостями C p и C V , имеет вид (формула Майера):

C p = C V + R.

Молярная теплоемкость C p газа в процессе с постоянным давлением всегда больше молярной теплоемкости C V в процессе с постоянным объемом

Отношение теплоемкостей в процессах с постоянным давлением и постоянным объемом играет важную роль в термодинамике. Оно обозначается греческой буквой γ.

Билет 19.

Цикл Карно. Тепловая и холодильная машины. КПД цикла Карно.

В термодинамике цикл Карно́ или процесс Карно - это обратимый круговой процесс, состоящий из двух адиабатических и двух изотермических процессов. В процессе Карно термодинамическая система выполняет механическую работу и обменивается теплотой с двумя тепловыми резервуарами, имеющими постоянные, но различающиеся температуры. Резервуар с более высокой температурой называется нагревателем, а с более низкой температурой - холодильником.

Цикл Карно назван в честь французского учёного и инженера Сади Карно, который впервые его описал в своём сочинении «О движущей силе огня и о машинах, способных развивать эту силу» в 1824 году.

Поскольку обратимые процессы могут осуществляться лишь с бесконечно малой скоростью, мощность тепловой машины в цикле Карно равна нулю. Мощность реальных тепловых машин не может быть равна нулю, поэтому реальные процессы могут приближаться к идеальному обратимому процессу Карно только с большей или меньшей степенью точности. В цикле Карно тепловая машина преобразует теплоту в работу с максимально возможным коэффициентом полезного действия из всех тепловых машин, у которых максимальная и минимальная температуры в рабочем цикле совпадают соответственно с температурами нагревателя и холодильника в цикле Карно

Пусть тепловая машина состоит из нагревателя с температурой Тн, холодильника с температурой Тх и рабочего тела .

Цикл Карно состоит из четырёх обратимых стадий, две из которых осуществляются при постоянной температуре (изотермически), а две - при постоянной энтропии (адиабатически). Поэтому цикл Карно удобно представить в координатах T (температура ) и S (энтропия ).

1. Изотермическое расширение (на рис. 1 - процесс A→Б). В начале процесса рабочее тело имеет температуру Тн, то есть температуру нагревателя. Затем тело приводится в контакт с нагревателем, который изотермически (при постоянной температуре) передаёт ему количество теплоты Q. При этом объём рабочего тела увеличивается, оно совершает механическую работу, а его энтропия возрастает.

2. Адиабатическое расширение (на рис. 1 - процесс Б→В). Рабочее тело отсоединяется от нагревателя и продолжает расширяться без теплообмена с окружающей средой. При этом температура тела уменьшается до температуры холодильника Тх, тело совершает механическую работу, а энтропия остаётся постоянной.

3. Изотермическое сжатие (на рис. 1 - процесс В→Г). Рабочее тело, имеющее температуру Тн, приводится в контакт с холодильником и начинает изотермически сжиматься под действием внешней силы, отдавая холодильнику количество теплоты Q. Над телом совершается работа, его энтропия уменьшается.

4. Адиабатическое сжатие (на рис. 1 - процесс Г→А). Рабочее тело отсоединяется от холодильника и сжимается под действием внешней силы без теплообмена с окружающей средой. При этом его температура увеличивается до температуры нагревателя, над телом совершается работа, его энтропия остаётся постоянной.

Обратный цикл Карно

В термодинамике холодильных установок и тепловых насосов рассматривают обратный цикл Карно , состоящий из следующих стадии: адиабатического сжатия за счёт совершения работы (на рис. 1 - процесс В→Б); изотермического сжатия с передачей теплоты более нагретому тепловому резервуару (на рис. 1 - процесс Б→А); адиабатического расширения (на рис. 1 - процесс А→Г); изотермического расширения с отводом теплоты от более холодного теплового резервуара (на рис. 1 - процесс Г→В).

Билет 20.

Второе начало термодинамики. Энтропия. Третье начало термодинамики.

Второе начало термодинамики - физический принцип, накладывающий ограничение на направление процессов, которые могут происходить в термодинамических системах .

Второе начало термодинамики запрещает так называемые вечные двигатели второго рода , показывая, что коэффициент полезного действия не может равняться единице, поскольку для кругового процесса температура холодильника не может равняться абсолютному нулю (невозможно построить замкнутый цикл, проходящий через точку с нулевой температурой).

Второе начало термодинамики является постулатом , не доказываемым в рамках классической термодинамики . Оно было создано на основе обобщения опытных фактов и получило многочисленные экспериментальные подтверждения.

Постулат Клаузиуса : «Невозможен круговой процесс, единственным результатом которого является передача теплоты от менее нагретого тела к более нагретому» (такой процесс называется процессом Клаузиуса ).

Постулат Томсона (Кельвина) : «Невозможен круговой процесс, единственным результатом которого было бы производство работы за счет охлаждения теплового резервуара» (такой процесс называется процессом Томсона ).

Энтропия изолированной системы не может уменьшаться» (закон неубывания энтропии ).

Такая формулировка основывается на представлении об энтропии как о функции состояния системы, что также должно быть постулировано.

В состоянии с максимальной энтропией макроскопические необратимые процессы (а процесс передачи тепла всегда является необратимым из-за постулата Клаузиуса) невозможны.

Третье начало термодинамики (теорема Нернста ) - физический принцип, определяющий поведение энтропии при приближении температуры к абсолютному нулю . Является одним из постулатов термодинамики , принимаемым на основе обобщения значительного количества экспериментальных данных.

Третье начало термодинамики может быть сформулировано так:

«Приращение энтропии при абсолютном нуле температуры стремится к конечному пределу, не зависящему от того, в каком равновесном состоянии находится система» .

Третье начало термодинамики относится только к равновесным состояниям.

Поскольку на основе второго начала термодинамики энтропию можно определить только с точностью до произвольной аддитивной постоянной (то есть, определяется не сама энтропия, а только её изменение). Третье начало термодинамики может быть использовано для точного определения энтропии. При этом энтропию равновесной системы при абсолютном нуле температуры считают равной нулю.

Третье начало термодинамики позволяет находить абсолютное значение энтропии, что нельзя сделать в рамках классической термодинамики (на основе первого и второго начал термодинамики).

Термодинамическая энтропия S , часто просто именуемая энтропия , - физическая величина , используемая для описания термодинамической системы , одна из основных термодинамических величин . Энтропия является функцией состояния и широко используется в термодинамике , в том числе химической .


Работа расширения равна нулю, т.к. dv=0.

Количество теплоты, подведенной к рабочему телу в процессе 1 2 при c v =const, определяется из соотношений

При переменной теплоемкости

где -средняя массовая изохорная теплоемкость в интервале температур от t 1 до t 2.

Т.к. l=0, то в соответствии с первым законом термодинамики и

при c v =const;

при с v =var.

Поскольку внутренняя энергия идеального газа является функцией только его температуры, то формулы справедливы для любого термодинамического процесса идеального газа.

Изменение энтропии в изохорном процессе определяется по формуле:

,

т.е. зависимость энтропии от температуры на изохоре при c v =const имеет логарифмический характер.

Изобарный процесс- это процесс, протекающий при постоянном давлении. Из уравнения состояния идеального газа следует, что при p=const находим , или

,

т.е. в изобарном процессе объем газа пропорционален его абсолютной температуре. На рисунке изображен график процесса

Рис. Изображение изобарного процесса в p, v- и T, s-координатах

Из выражения следует, что .

Так как и , то одновременно .

Количество теплоты, сообщаемое газу при нагревании (или отдаваемое им при охлаждении), находим из уравнения

,

Средняя массовая изобарная теплоемкость в интервале температур от t 1 до t 2 ; при c p =const .

Изменение энтропии при c p =const согласно равно , т.е. температурная зависимость энтропии при изобарном процессе тоже имеет логарифмический характер, но поскольку с p >c v , то изобара в Т-S- диаграмме более полого, чем изохора.

Изотермический процесс - это процесс, протекающий при постоянной температуре. или , т.е давление и объем обратно пропорциональны друг другу, так что при изетермическом сжатии давление газа возрастает, а при расширении падает.

Работа процесса

Так как температура не меняется то и вся подводимая теплота превращается в работу расширения q=l.

Изменение энтропии равно

Адиабатный процесс. Процесс, про­исходящий без теплообмена с окружающей средой, называется адиабатным , т. е. .

Для того чтобы осуществить такой процесс, следует либо теплоизолировать газ, т. е. поместить его в адиабатную оболочку, либо провести процесс настолько быстро, чтобы изменение температуры газа, обусловленное его теплообменом с окружающей средой, было пренебрежимо мало по сравнению с изменением температуры, вызванным расширением или сжатием газа. Как правило, это возможно, ибо теплообмен происходит значительно медленнее, чем сжатие или расширение газа.



Уравнения первого закона термодинамика для адиабатного процесса принимают вид: c p dT - vdp = 0; c o dT " + pdv = 0. Поделив первое уравнение на второе, получим

После интегрирования получим или .

Это и есть уравнения адиабаты идеального газа при постоянном отношении теплоемкостей (k = const). Величина

называется показателем адиабаты . Подставив c p = c v +R, получим k=1+R/c v

Величина k также не зависит от температуры и определяется числом степеней свободы мо­лекулы. Для одноатомного газа k =1,66, для двухатомного k = 1,4, для трех-и многоатомных газов k = 1,33.

Поскольку k > 1, то в координатах р, v (рис. 4.4) линия адиабаты идет круче линии изотермы: при адиабатном расширении давление понижается быстрее, чем при изотермическом, так как в процессе расширения уменьшается температура газа.

Определив из уравнения состояния, написанного для состояний 1 и 2, отношение объемов или давлений и подставив их, получим уравнение адиабатного процесса в форме, выражающей зависимость температуры от объема или давления

,

Любой процесс можно описать в p, v-координатах уравнением подбирая соответствующее значение n. Процесс, описываемый этим уравнением, называется политропным.

Для данного процесса n является величиной постоянной.

Из уравнений можно получить

, , ,

На рис. 4.5 показано взаимное расположение на р, v- и Т, s-диаграммах политропных процессов с разными значениями показателя политропы. Все процессы начинаются в одной точке («в центре»).


Изохора (n= ± оо) делит поле диаграммы на две области: процессы, находящиеся правее изохоры, характеризуются положительной работой, так как сопровождаются расширением рабочего тела; для процессов, расположенных левее изохоры, характерна отрицательная работа.

Процессы, расположенные правее и выше адиабаты, идут с подводом теплоты к рабочему телу; процессы, лежащие левее и ниже адиабаты, протекают с отводом теплоты.

Для процессов, расположенных над изотермой (n = 1), характерно увеличение внутренней энергии газа; процессы, расположенные под изотермой, сопровождаются уменьшением внутренней энергии.

Процессы, расположенные между адиабатой и изотермой, имеют отрицательную теплоемкость, так как dq и du (а следовательно, и dT), имеют в этой области противоположные знаки. В таких процессах |/|>|q!, поэтому на производство работы при расширении тратится не только подводимая теплота, но и часть внутренней энергии рабочего тела

7.Какой процесс остается неизменным в адиабатном процессе и почему?

Адиабатный процесс -это процесс протекающий без теплообмена с окружающей средой

Под энтропией тела можно понимать величину, изменения которой в любом элементарном термодинамическом процессе равно отношению внешнего тепла , участвующий в этом процессе, к абсолютной температуре тела , dS=0, S=сonst

Энтропия –это термодинамический параметр системы, j характеризует степень порядка в системе.

Для адиабатного процесса, протекающего без теплообмена газа с внешней средой (dq=0)

S 1 =S 2 =S=const, т.к. в этом процессе q=0, то , адиабатный процесс в T-S диаграмме изображается прямой линией.

(является качественной характеристикой процесса преобразования).

В уравнении абсолютная температура Т величина всегда положительная, тогда и имеют одинаковые знаки, т.е если положительно, то положительно, и наоборот. Таким образом в обратимых процессах с подводом тепла ( >0) энтропия газа увеличивается, а в обратимых с отводом тепла уменьшается- это важное свойство параметра S.

Изменение энтропии зависит лишь от начального и конечного состояния рабочего тела.

8.Что такое энтальпия? Как изменяется энтальпия в процессе дросселирования идеального газа?

Энтальпия (теплосодержание, от греч. нагревать)

Энтальпия - это сумма внутренней энергии газа и потенциальной энергии, давления

обусловленное действием внешних сил.

где U-внутренняя энергия 1 кг газа.

PV-работа проталкивания, при этом Р и V соответственно давление и удельный объём при температуре, для которой определена внутренняя энергия.

Энтальпию измеряют в тех же единицах, что и внутреннюю энергию (кДж/кг или

Энтальпия идеального газа определяется следующим способом:

Так как входящие в нее величины являются функциям состояния, то и сама энтальпия является функцией состояния. Так же как внутренняя энергия, работа и теплота, она измеряется в джоулях (Дж).

Энтальпия обладает свойством аддитивности Величина

называемая удельной энтальпией (h=Н/М), представляет собой энтальпию системы содержащей 1 кг вещества, и измеряется в Дж/кг.

Изменение энтальпии. в любом процессе определяется только начальным и конечным состояниями тела и не зависит от характера процесса.

Физический смысл энтальпии выясним на следующем примере. Рассмотрим

расширенную систему, включающую газ в цилиндре и поршень с грузом общим весом в (рис. 2.4). Энергия этой системы складывается из внутренней энергии газа и потенциальной энергии поршня с грузом в поле внешних сил: если давление системы сохраняется неизменным, т. е. осуществляется изобарный процесс (dp=0), то

т. е. теплота, подведенная к системе при постоянном давлении, идет только на изменение энтальпии данной системы.

9.Первый закон термодинамики и его записи через внутреннюю энергию и энтальпию?

Первый закон термодинамики является приложением закона сохранения и превращения энергии к тепловым явлениям. Напомним, что сущность закона сохранения и превращения энергии, являющегося основным, законом естествознания, состоит в том, что энергия не создаётся из ничего и не исчезает бесследно, а превращается из одной формы в другую в строго определённых количествах. Энергия вообще - это свойство тел, при определённых условиях совершающее работу.

Под внутренней энергией будем понимать энергию хаотического движения молекул и атомов, включающую энергию поступательного, вращательного и колебательного движений как молекулярного, так и внутримолекулярного, а также потенциальную энергию сил взаимодействия между молекулами. Внутренняя энергия это функция состояния

где М-масса, кг

с-теплоемкость, кДж/кгК

с р -теплоемкость при при постоянном давлении (изобарная)=0,718 кДж/кгК

с v - теплоемкость при при постоянном объеме (изохорная)=1,005 кДж/кгК

Т-температура, 0 С

11.Как определить среднюю в интервале температур t 1 и t 2 теплоемкость по табличным значениям от 0 0 до t 1 0 C и до t 2 0 C соответственно. Чему равна теплоемкость в адиабатическом процессе?

или

В адиабатном процессе теплоемкость равна 0, так как нет обмена с окружающей средой.

12.Соотношение между теплоемкостями идеального газа при Р=const и V= const. Чему равна теплоемкость кипящей воды?

Уравнение Майера , для идеального газа

Для реального газа ,

где R-газовая постоянная численно равная работе расширения одного кг газа в изобарных условиях при нагреве на 1 0 С

В процессе v= сonst теплота, сообщаема газу, идет лишь на изменение его внутренней энергии, тогда при процессе р= сonst теплота расходуется на увеличение внутренней энергии и на совершение работы против внешних сил. Поэтому с р больше с v на величину этой работы.

k=c p /c v -показатель адиобаты

Кипение Т=const поэтому по определению теплоемкость кипящей воды бесконечность.

13. Дайте одну из формулировок 2-го закона термодинамики? Приведите его математическую запись.

2 закон термодинамики устанавливает качественную зависимость, т.е. определяет направление реальных тепловых процессов и условие преобразования теплоты в работах.

2 закон термодинамики: Теплота не может самостоятельно переходить от более холодного к более нагретому (без компенсации)

Для осуществления процесса перевода теплоты в работу необходимо иметь не только горячий источник, но и холодный, т.е. необходим температурный перепад.

1.Освальд: вечный двигатель второго рода невозможен.

2.Томсон: невозможно периодическое действие теплового двигателя единственным результатом работы которого было бы отнятие теплоты от некоторого источника

3.Клаузиус: невозможен самопроизвольный нескомпенсировнный переход тепла от тел с температурой к телам с более высокой темпертурой.

Математическая запись 2-го рода для обратных процессов: или

Математическая запись 2-го рода для необратимых процессов: