Принципы радиолокации. Распространение радиоволн. Радиолокация. Телевидение. Развитие средств связи

Принципы радиолокации. Распространение радиоволн. Радиолокация. Телевидение. Развитие средств связи
Принципы радиолокации. Распространение радиоволн. Радиолокация. Телевидение. Развитие средств связи

Введение в радиолокацию.

Введение

Решение огромного количества задач с заданной эффективностью невозможно без использования радиолокационной техники, физические принципы действия которой основаны на рассеянии радиоволн объектами, метеообразованиями и другими неоднородностями (далее объектами), отличающимися своими электрическими характеристиками (электрической проницаемостью ε, диэлектрической проницаемостью μ и электропроводностью σ).

Интенсивность и другие неэнергетические характеристики рассеяния или отражения радиоволн (интенсивность вторичного поля) зависят:

От степени отличия характеристик облучаемых объектов и среды распространения радиоволн (РРВ),

От формы объектов,

Соотношения их размеров l и длины волны λ

От поляризации радиоволн.

Именно эти характеристики интересны с прикладной точки зрения.

Поэтому рассмотрение основных понятий, используемых в радиолокации, является весьма актуальным.

Для достижения поставленных целей рассмотрим следующие вопросы:

1. Физические основы радиолокации.

2. Системы координат, используемые в радиолокации.

3. Основные методы радиолокации.

Данный учебный материал можно найти в следующих источниках:

1. Бакулев П.А. Радиолокационные системы: Учебник для вузов. – М.:

Радиотехника, 2004.

2. Белоцерковский Г.Б. Основы радиолокации и радиолокационные

устройства. – М.: Советское радио, 1975.

1. Физические основы радиолокации.

Радиолокация – это область радиоэлектроники, занимающаяся обнаружением объектов (целей), определением их пространственных координат, параметров движения и физических размеров с помощью радиотехнических средств и методов.

Перечисленные задачи решаются в процессе радиолокационного наблюдения, а устройства, предназначенные для этого, называются радиолокационными станциями (РЛС) или радиолокаторами.

К радиолокационным целям (или просто целям) относятся: пилотируемые и беспилотные летательные аппараты (ЛА), естественные и искусственные космические тела, атмосферные образования, морские и речные корабли, различные наземные и подземные, надводные и подводные объекты и т.д.

Информация о целях содержится в радиолокационных сигналах.

В случае радиолокационного зондирования ЛА, прежде всего, необходимо получить информацию об их пространственных координатах (дальность до цели и ее угловые координаты).

Радиотехнические измерения дальности называются радиодальнометрией , а угловых координат - радиопеленгацией .

Измерению координат и скорости целей предшествует их обнаружение, разрешение и опознавание.

Под разрешением целей понимают определение количества целей в группе, их протяженности, класса и т. д.

Опознавание цели означает установление ее существенных признаков, в частности, государственной принадлежности.

Определение типа (класса) цели производится в процессе ее распознавания, что предполагает сложную обработку радиолокационных сигналов.

Совокупность сведений, получаемых радиолокационными средствами, называется радиолокационной информацией . Последняя передается на командные пункты, ПК и исполнительные устройства.

Из всех перечисленных функций радиолокации основной является радиолокационное наблюдение (обнаружение целей, измерение координат и параметров движения), а различение объектов, опознавание их и передача полученной радиолокационной информации по назначению относятся к дополнительным функциям PJIC.

Получение радиолокационной информации основывается на физических свойствах электромагнитных волн (ЭМВ), используемых в качестве носителей радиолокационного сигнала. Как известно, ЭМВ распространяются в однородной среде прямолинейно с постоянной скоростью

где ,- абсолютные диэлектрическая и магнитная проницаемости среды РРВ.

Для свободного пространства Ф/м;Г/м и соответственном/с.

Постоянство вектора скорости распространения ЭМВ в однородной среде, т.е. его модуля и направления, служит физической основой радиолокационных измерений.

Действительно, благодаря этому дальность и время распространения радиоволны (РВ) связаны прямой пропорциональностью, и если измерено время прохождения волнымежду целью и РЛС, то становится известным и расстояние между ними:

Цель вносит неоднородность в свободнее пространство, так как ее параметры иотличаются соответственно оти, чем нарушается постоянство вектора скорости РРВ.

В результате объект преобразует радиоизлучение: часть энергии переотражается, часть – поглощается объектом, переходя в тепло, а другая часть при радиопрозрачности объекта – преломляется, изменяя направление РРВ. С точки зрения радиолокации интересен первый случай, когда цель становится источником вторичного излучения.

По времени запаздывания отраженного сигнала относительно излученного

определяем наклонную дальность цели

Возможно и такое решение: на цели, если она «своя», а не противника, устанавливается приемопередатчик, называемый ответчиком, или ретранслятором, который принимает зондирующий сигнал от РЛС и усиливает его для запуска передатчика. Ответный сигнал принимается на РЛС, и дальность цели определяется по формуле

, (1.5)

где - запаздывание ответного сигнала относительно зондирующего;-заранее известное время задержки сигнала в цепях ответчика.

Величина должна измеряться безынерционными электронными часами, так как время запаздывания радиолокационных сигналов очень мало (от микро- до миллисекунд).

Например, ЭМВ, отраженные от цели, расположенной на дальности D =150м от радиолокатора, запаздывают на 1 мкс, и каждому километру дальности до цели соответствует задержка ЭМВ на время 1000/150 = 6,7 мкс.

Допустим, радиолокационная антенна имеет вид прямолинейной решетки из р вибраторов, отстоящих один от другого на расстоянии d (рис. 1.1, а). Значительная удаленность цели от РЛС позволяет считать, что лучи, идущие отцели к вибраторам, направлены параллельно под углом φ к антенной решетке, а амплитуды электрических движущих сил (ЭДС), наводимых в отдельныхвибраторах, равны между собой: .

В этих условиях ЭДС соседних вибраторов отличаются только сдвигом по фазе ψ, вызванным разностью хода волн . Так как на каждую единицу длины данная бегущая волна отстает по фазе на угол, то

. (1.6)

Сложение векторов ЭДС вибраторов при различных углах ψ= ψ" (рис. 1.1, б) и ψ = ψ" (рис. 1.1, в) дает различную результирующую ЭДС . Как видно из рисунка 1.1 и формулы (1.6), с изменениемφ изменяется фаза ψ, а следовательно, и амплитуда результирующей ЭДС в приемной антенне. Отсюда вытекает возможность пеленгации цели по амплитудным и фазовым характеристикам направленности антенны.


Рис. 1.1. Прием ЭМВ линейной вибраторной антенной решеткой (а) и векторные диаграммы ЭДС решетки при различных направлениях облучения (б, в)

Как уже говорилось, первопричиной образования таких характеристик явилось различие в запаздывании волн, принимаемых отдельными элементами антенной решетки. Поэтому не только радиодальнометрия, но и радиопеленгация основана на постоянстве скорости и направления РРВ.

Радиальную и угловую скорости цели можно найти вычислением скорости приращения дальности и углов во времени. Обычно предпочитают более простую и точную операцию - непосредственное измерение так называемого допплеровского сдвига несущей частоты сигнала , вызванного движением цели.

Доплеровский сдвиг частоты связан с радиальной скоростью движения

объекта соотношением

, (1.7)

где – длина волны излучаемого сигнала;– радиальная скорость относительного движения цели.

Если цель приближается к РЛС или удаляется от нее, то отраженный сигнал появляется в РЛС соответственно раньше или позже, чем при неподвижной цели. За счет этого фаза принимаемой волны имеет другие значения,что равнозначно приращению частоты радиосигнала. Измерив полученное (допплеровское) приращение частоты, можно (опять же благодаря постоянству скорости РРВ) определить радиальную скорость цели.

Подобно тому, как разность времени запаздывания сигнала в элементах антенны определяется угловыми координатами цели, разность допплеровских сдвигов частот в тех же (обычно крайних) элементах антенной решетки определяется скоростью изменения углового положения цели.

Другими физическими свойствами ЭМВ являются:

Прямолинейность распространения в однородной среде, что важно приточном измерении угловых координат и параметров движения;

Способность формироваться в узкий пучок, повышая тем самым точность, разрешающую способность и помехоустойчивость РЛС;

Способность отражаться от объектов;

Способность изменять свою частоту при наличии относительного движения цели и РЛС.

Таким образом, в отраженных от целей радиолокационных сигналах заложена вся информация о них, так как при отражении изменяются все параметры сигнала (амплитуда, частота, начальная фаза, длительность, спектр, поляризацияи т.д.).

Электромагнитные волны различных диапазонов

Распространение радиоволн

Электромагнитные волны, используемые для радиосвязи, называются радиоволнами . Радиоволны делятся на группы.

Наименование радиоволн Диапазон частот, Гц Диапазон длин волн (в вакууме), м
Сверхдлинные < 3∙10 4 > 10 000
Длинные 3∙10 4 – 3∙10 5 10000 – 1000
Средние 3∙10 5 – 3∙10 6 1000 – 100
Короткие 3∙10 6 – 3∙10 7 100 – 10
Ультракороткие:
метровые 3∙10 7 – 3∙10 8 10 – 1
дециметровые 3∙10 8 – 3∙10 9 1 – 0,1
сантиметровые 3∙10 9 – 3∙10 10 0,1 – 0,01
миллиметровые 3∙10 10 – 3∙10 11 0,01 – 0,001

При использовании электромагнитных волн для радиосвязи как источник, так и приемник радиоволн чаще всего располагают вблизи земной поверхности. Ее форма и физические свойства, а также состояние атмосферы сильно влияют на распространение радиоволн.

Особенно существенное влияние на распространение радиоволн оказывают слои ионизированного газа в верхних частях атмосферы на высоте 100-300 км над поверхностью Земли. Эти слои называют ионосферой . Ионизация воздуха верхних слоев атмосферы вызывается электромагнитным излучением Солнца и потоком заряженных частиц, испускаемых Солнцем.

Распространение радиоволн зависит от свойств атмосферы. Нижняя, наиболее плотная часть атмосферы называется тропосферой и простирается до высоты 10-12 км. Выше расположена стратосфера, верхняя граница которой лежит на высоте 60-80 км. Далее находится ионосфера, которая характеризуется малой плотностью газа. Под действием солнечной радиации молекулы газа ионизируются, то есть распадаются на ионы и свободные электроны. Ионизированный газ обладает свойством электропроводности и может отражать радиоволны.

Ионосфера неоднородна; некоторые ее слои ионизированы наиболее сильно. Различают слои ионосферы D, Е и F Степень ионизации атмосферы зависит от интенсивности солнечной радиации и изменяется в различное время суток и года.

Проводящая электрический ток ионосфера отражает радиоволны с длиной волны λ > 10 м, как обычная металлическая пластина. Но способность ионосферы отражать и поглощать радиоволны существенно меняется в зависимости от времени суток и времен года (именно поэтому радиосвязь, особенно в диапазоне средних длин волн (100-1000 м), гораздо надежнее ночью и в зимнее время).

Устойчивая радиосвязь между удаленными пунктами на земной поверхности вне прямой видимости оказывается возможной благодаря отражению волн от ионосферы и способности радиоволн огибать выпуклую земную поверхность (т.е. дифракции). Дифракция выражена тем сильнее, чем больше длина волны. Поэтому радиосвязь на больших расстояниях за счет огибания волнами Земли оказывается возможной лишь при длинах волн, значительно превышающих 100 м (средние и длинные волны).

Радиоволны, посланные в пространство, распространяются в нём со скоростью света. Но как только они встречают на своём пути какой-нибудь объект, например, самолёт или корабль, они отражаются от него и возвращаются обратно. Следовательно, с их помощью можно обнаруживать различные удалённые объекты, наблюдать за ними и определять их координаты и параметры.

Обнаружение местоположения объектов с помощью радиоволн называют радиолокацией .

Как появилась радиолокация

Александр Степанович Попов

В 1897 г. во время опытных сеансов радиосвязи между морским транспортом «Европа» и крейсером «Африка», проводимых русским физиком Александром Степановичем Поповым , обнаружили интересное явление. Оказалось, что правильность распространения электромагнитной волны искажали все металлические предметы – мачты, трубы, снасти как на корабле, с которого сигнал отправлялся, так и на корабле, где его принимали. Когда же между этими кораблями появился крейсер «Лейтенант Ильин», радиосвязь между ними нарушилась. Так было открыто явление отражения радиоволн от корпуса корабля.

Но если радиоволны способны отражаться от корабля, то с их помощью корабли можно и обнаруживать. А заодно и другие цели.

И уже в 1904 г. немецкий изобретатель Кристиан Хюльсмайер подал заявку на первый радиолокатор, а в 1905 г. получил патент на использование эффекта отражения радиоволн для поиска кораблей. А ещё через год, в 1906 г., он предложил использовать этот эффект, чтобы определять расстояние до объекта, отражающего радиоволны.

Кристиан Хюльсмайер

В 1934 г. шотландский физик Роберт Александр Уотсон-Уотт получил патент на изобретение системы для обнаружения воздушных объектов и уже в следующем году продемонстрировал одно из первых таких устройств.

Роберт Александр Уотсон-Уотт

Как работает радиолокатор

Определение местонахождения чего-либо называют локацией . Для этого в технике применяют устройство, называемое локатором . Локатор излучает какой-либо вид энергии, например, звук или оптический сигнал, в сторону предполагаемого объекта, а затем принимает отражённый от него сигнал. Радиолокатор использует для этой цели радиоволны.

На самом деле радиолокатор, или радиолокационная станция (РЛС), - сложная система. Конструкции различных радиолокаторов могут различаться, но принцип их работы одинаков. Радиопередатчик посылает в пространство радиоволны. Достигнув цели, они отражаются от неё, как от зеркала, и возвращаются назад. Такая радиолокация называется активной.

Основные узлы радиолокатора (РЛС) – передатчик, антенна, антенный переключатель, приёмник, индикатор.

По способу излучения радиоволн РЛС делятся на импульсные и непрерывного действия.

Как работает импульсная радиолокационная станция?

Передатчик радиоволн включается на короткое время, поэтому радиоволны излучаются импульсами. Они поступают в антенну, которая располагается в фокусе зеркала параболоидной формы. Это нужно для того, чтобы радиоволны распространялись в определённом направлении. Работа радиолокатора похожа на работу светового прожектора, лучи которого подобным образом направляются в небо и, освещая его, ищут нужный объект. Но работа прожектора этим и ограничивается. А радиолокатор не только посылает радиоволны, но и принимает сигнал, отражённый от найденного объекта (радиоэхо). Эту функцию выполняет приёмник.

Антенна импульсного радиолокатора работает то на передачу, то на приём. Для этого в ней есть переключатель. Как только радиосигнал послан, отключается передатчик и включается приёмник. Наступает пауза, во время которой радиолокатор как бы «слушает» эфир и ждёт радиоэхо. И как только антенна улавливает отражённый сигнал, тут же отключается приёмник и включается передатчик. И так далее. Причём время паузы может во много раз превышать длительность импульса. Таким образом излучаемый и принимаемый сигнал разделяются во времени.

Принятый радиосигнал усиливается и обрабатывается. На индикаторе, который в простейшем случае представляет собой дисплей, отображается обработанная информация, например, размеры объекта или расстояние до него, или сама цель и окружающая её обстановка.

Радиоволны распространяются в пространстве со скоростью света. Поэтому, зная время t от излучения импульса радиосигнала до его возвращения, можно определить расстояние до объекта.

R = t/2 ,

где с – скорость света.

Радиолокатор непрерывного действия высокочастотные радиоволны излучает непрерывно. Поэтому антенной улавливается также непрерывный отражённый сигнал. В своей работе такие РЛС используют эффект Доплера . Суть этого эффекта в том, что частота сигнала, отражённого от объекта, движущегося по направлению к радиолокатору, выше частоты сигнала, отражённого от объекта, удаляющегося от него, несмотря на то, что частота излучаемого сигнала постоянна. Поэтому такие РЛС используют для определения параметров движущегося объекта. Пример радиолокатора, в основе работы которого лежит эффект Доплера – радар, используемый сотрудниками ГИБДД для определения скорости движущегося автомобиля.

В поисках объекта направленный луч антенны РЛС сканирует пространство, описывая полный круг, либо выбирая определённый сектор. Он может быть направлен по винтовой линии, по спирали. Обзор также может быть коническим или линейным. Всё зависит от задачи, которую он должен выполнить.

Если необходимо постоянно следить за выбранной движущейся целью, антенна радиолокатора всё время направлена на неё и поворачивается вслед за ней с помощью специальных следящих систем.

Применение радиолокаторов

Впервые радиолокационные станции начали применяться во время Второй мировой войны для обнаружения военных самолётов, кораблей и подводных лодок.

Так в конце декабря 1943 г. радиолокаторы, установленные на английских кораблях, помогли обнаружить фашистский линкор, вышедший ночью из порта Альтенфиорд в Норвегии, чтобы перехватить военные суда. Огонь по линкору вёлся очень точно, и вскоре он пошёл ко дну.

Первые РЛС были не очень совершенными, в отличие от современных, надёжно защищающих воздушное пространство от воздушных налётов и ракетного нападения, распознающих практически любые военные объекты на суше и на море. Радиолокационное наведение применяется в самонаводящихся ракетах для распознавания местности. РЛС осуществляют слежение за полётами межконтинентальных ракет.

РЛС нашли своё применение и в мирной жизни. Без них не могут обходиться лоцманы, проводящие корабли через узкие проливы, диспетчеры в аэропортах, руководящие полётами гражданских самолётов. Они незаменимы при плавании в условиях ограниченной видимости – ночью или при плохой погоде. С их помощью определяют рельеф дна морей и океанов, исследуют загрязнения их поверхностей. Их используют метеорологи для определения грозовых фронтов, измерения скорости ветра и облаков. На рыболовных судах радиолокаторы помогают обнаруживать косяки рыбы.

Очень часто радиолокаторы, или радиолокационные станции (РЛС), называют радарами . И хоть сейчас это слово стало самостоятельным, на самом деле это аббревиатура, возникшая из английских слов «radio detection and ranging » , что означает «радиообнаружение и дальнометрия» и отражает суть радиолокации.

Радиолокация - это совокупность научных методов и технических средств, служащих для определения координат и характеристик объекта посредством радиоволн. Исследуемый объект часто именуют радиолокационной целью (или просто целью).

Радиотехническое оборудование и средства, предназначенные для выполнения задач радиолокации, получили название радиолокационных систем, или устройств (РЛС или РЛУ). Основы радиолокации базируются на следующих физических явлениях и свойствах:

  • В среде распространения радиоволны, встречая объекты с иными электрическими свойствами, рассеиваются на них. Волна, отраженная от цели (или ее собственное излучение), позволяет радиолокационным системам обнаружить и идентифицировать цель.
  • На больших расстояниях распространение радиоволн принимается прямолинейным, с постоянной скоростью в известной среде. Это допущение делает возможным до цели и ее угловых координат (с определенной ошибкой).
  • На основании эффекта Доплера по частоте принятого отраженного сигнала вычисляют радиальную скорость точки излучения относительно РЛУ.

Историческая справка

На способность радиоволн к отражению указывали великий физик Г. Герц и русский электротехник еще в конце XIX века. Согласно патенту от 1904 года, первый радар создал немецкий инженер К. Хюльмайер. Прибор, названный им телемобилоскопом, использовался на судах, бороздивших Рейн. В связи с развитием применение радиолокации выглядело очень перспективным в качестве элемента Исследования в этой области велись передовыми специалистами многих стран мира.

В 1932 году основной принцип радиолокации описал в своих работах научный сотрудник ЛЭФИ (Ленинградского электрофизического института) Павел Кондратьевич Ощепков. Им же в сотрудничестве с коллегами Б.К. Шембель и В.В. Цимбалиным летом 1934 года был продемонстрирован опытный образец радиолокационной установки, обнаружившей цель на высоте 150 м при удалении 600 м. Дальнейшие работы по совершенствованию средств радиолокации сводились к увеличению дальности их действия и повышению точности определения местоположения цели.

Природа электромагнитного излучения цели позволяет говорить о нескольких видах радиолокации:

  • Пассивная радиолокация исследует собственное излучение (тепловое, электромагнитное и т.п.), которое генерирует цели (ракеты, самолеты, космические объекты).
  • Активная с активным ответом осуществляется в случае, если объект оборудован собственным передатчиком и взаимодействие с ним происходит по алгоритму "запрос - ответ".
  • Активная с пассивным ответом предполагает исследование вторичного (отраженного) радиосигнала. в этом случае состоит из передатчика и приемника.
  • Полуактивная радиолокация - это частный случай активной, в случае когда приемник отраженного излучения расположен вне РЛС (например, является конструктивным элементом самонаводящейся ракеты).

Каждому виду свойственны свои достоинства и недостатки.

Методы и оборудование

Все средства радиолокации по используемому методу разделяют на РЛС непрерывного и импульсного излучения.

Первые содержат в своем составе передатчик и приемник излучения, действующие одновременно и непрерывно. По этому принципу были созданы первые радиолокационные устройства. Примером такой системы могут служить радиоальтиметр (авиационный прибор, определяющий удаление летательного аппарата от поверхности земли) или известный всем автолюбителям радар для определения скоростного режима транспортного средства.

При импульсном методе электромагнитная энергия излучается короткими импульсами в течение нескольких микросекунд. После станция ведет работу только на прием. После улавливания и регистрации отраженных радиоволн РЛС передает новый импульс и циклы повторяются.

Режимы работы РЛС

Существует два основных режима функционирования радиолокационных станций и устройств. Первый - сканирование пространства. Он осуществляется по строго заданной системе. При последовательном обзоре перемещение луча радара может носить круговой, спиральный, конический, секторный характер. Например, решетка антенны может медленно поворачиваться по кругу (по азимуту), одновременно сканируя по углу места (наклоняясь вверх и вниз). При параллельном сканировании обзор осуществляется пучком радиолокационных лучей. Каждому соответствует свой приемник, ведется обработка сразу нескольких информационных потоков.

Режим слежения подразумевает постоянную направленность антенны на выбранный объект. Для ее поворота, согласно с траекторией движущейся цели, используются специальные автоматизированные следящие системы.

Алгоритм определения дальности и направления

Скорость распространения электромагнитных волн в атмосфере составляет 300 тыс. км/с. Поэтому, зная время, затраченное транслируемым сигналом на преодоление расстояния от станции до цели и обратно, легко вычислить удаленность объекта. Для этого необходимо точно зафиксировать время отправки импульса и момент принятия отраженного сигнала.

Для получения информации о местонахождении цели используется остронаправленная радиолокация. Определение азимута и элевации (угла места или возвышения) объекта производится антенной с узким лучом. Современные РЛС используют для этого фазированные антенные решетки (ФАР), способные задавать более узкий луч и отличающиеся высокой скоростью вращения. Как правило, процесс сканирования пространства совершается минимум двумя лучами.

Основные параметры систем

От тактических и технических характеристик оборудования во многом зависит эффективность и качество решаемых задач.

К тактическим показателям РЛС причисляют:

  • Зону обзора, ограниченную минимальной и максимальной дальностью обнаружения цели, допустимым азимутальным углом и углом возвышения.
  • Разрешающую способность по дальности, азимуту, элевации и скорости (возможность определять параметры рядом расположенных целей).
  • Точность измерений, которая измеряется наличием грубых, систематических или случайных ошибок.
  • Помехозащищенность и надежность.
  • Степень автоматизации извлечения и обработки поступающего потока информационных данных.

Заданные тактические характеристики закладываются при проектировании устройств посредством определенных технических параметров, среди которых:

На боевом посту

Радиолокация - это универсальный инструмент, получивший широкое распространение в военной сфере, науке и народном хозяйстве. Области использования неуклонно расширяются благодаря развитию и совершенствованию технических средств и технологий измерений.

Применение радиолокации в военной отрасли позволяет решить важные задачи обзора и контроля пространства, обнаружения воздушных, наземных и водных мобильных целей. Без радаров невозможно представить оборудование, служащее для информационного обеспечения навигационных систем и систем управления орудийным огнем.

Военная радиолокация является базовой составляющей стратегической системы предупреждения о ракетном нападении и комплексной противоракетной обороны.

Радиоастрономия

Посланные с поверхности земли радиоволны также отражаются от объектов в ближнем и дальнем космосе, как и от околоземных целей. Многие космические объекты невозможно было полноценно исследовать лишь с использованием оптических инструментов, и только применение радиолокационных методов в астрономии позволило получить богатую информацию об их природе и структуре. Впервые пассивная радиолокация для исследования Луны была применена американскими и венгерскими астрономами в 1946 году. Примерно в то же время были случайно приняты и радиосигналы из космического пространства.

У современных радиотелескопов приемная антенна имеет форму большой вогнутой сферической чаши (подобно зеркалу оптического рефлектора). Чем больше ее диаметр, тем более слабый сигнал антенна сможет принять. Часто радиотелескопы работают комплексно, объединяя не только устройства, расположенные недалеко друг от друга, но и находящиеся на разных континентах. Среди важнейших задач современной радиоастрономии - изучение пульсаров и галактик с активными ядрами, исследование межзвездной среды.

Гражданское применение

В сельском и лесном хозяйстве радиолокационные устройства незаменимы при получении информации о распределении и плотности растительных массивов, изучении структуры, параметров и видов почв, своевременном обнаружении очагов возгораний. В географии и геологии радиолокация используется для выполнения топографических и геоморфологических работ, определения структуры и состава пород, поиска месторождений полезных ископаемых. В гидрологии и океанографии радиолокационными методами осуществляется контроль состояния главных водных артерий страны, снегового и ледяного покрова, картографирование береговой линии.

Радиолокация - это незаменимый помощник метеорологов. РЛС легко выяснит состояние атмосферы на удалении десятков километров, а по анализу полученных данных составляется прогноз изменения погодных условий в той или иной местности.

Перспективы развития

Для современной радиолокационной станции главным оценочным критерием выступает соотношение эффективности и качества. Под эффективностью понимаются обобщенные тактико-технические характеристики оборудования. Создание совершенной РЛС - сложная инженерная и научно-техническая задача, осуществление которой возможно только с использованием новейших достижений электромеханики и электроники, информатики и вычислительной техники, энергетики.

По прогнозам специалистов, в ближайшем будущем главными функциональными узлами станций самого разного уровня сложности и назначения будут твердотельные активные ФАР (фазированные антенные решетки), преобразующие аналоговые сигналы в цифровые. Развитие вычислительного комплекса позволит полностью автоматизировать управление и основные функции РЛС, предоставив конечному потребителю всесторонний анализ полученной информации.

Важным фактором при выборе диапазона длин волн является характер отражения радиоволн от целей. Если размеры цели и радиусы кривизны отдельных ее участков много меньше длины волны, то интенсивность отражения мала. При этом цель можно уподобить антенне с очень малой^дей-ствующей высотой или малой эффективной площадью.

Другой крайний случай, когда размеры цели и радиусы кривизны отдельных участков много больше длины волны, близок к оптическому; интенсивность отражения достигает заметной величины, мало зависит от длины волны и определяется в основном отражающими свойствами и размерами цели. В промежуточном случае соизмеримости размеров цели или ее отдельных участков с длиной волны возможно резонансное возбуждение участков поверхности цели, при котором интенсивность отражения заметно возрастает в некоторых направлениях.

Учитывая размеры реальных целей, приходим к выводу, что для того чтобы длина волны была много меньше этих размеров или соизмерима с ними, в радиолокации необходимо использовать ультракороткие волны (УКВ). Другая причина использования этого диапазона, особенно волн более коротких, чем метровые, связана с размерами антенн. Дело в том, что угловая ширина диаграммы направленности антенны независимо от ее типа прямо пропорциональна длине волны и обратно пропорциональна соответствующему размеру.

Для зеркальной антенны в виде усеченного параболоида ширина луча по точкам половинного значения мощности (в градусах)

где % - длина волны, a dp, - максимальный линейный размер зеркала в плоскости луча, так что, например, при Я = = 3 см для получения ширины луча 9 0 8 = 3° требуется йа » = 65 см, а чтобы луч имел такую ширину при длине волны К -3 м, размер зеркала а*х должен составлять 6,5 м.

формула (1) показывает, что острый луч, обеспечивающий разделение нескольких целей по угловой координате и высокую точность определения координат при заданных размерах антенны, можно получить только при достаточно короткой волне X.

Поэтому в ряде авиационных РЛС используют сантиметровые радиоволны, а для обзора летного поля в аэропортах - миллиметровые.

С точки зрения повышения разрешающей способности и точности {т. е. информативности радиолокационного сигнала) необходимо расширять полосу частот зондирующего сигнала, что, например, достигается уменьшением длительности зондирующих импульсов либо применением специальных сложных сигналов. Естественно, что расширение полосы передаваемых частот требует повышения несущей частоты сигнала.

При выборе диапазона волн важное значение имеют особенности распространения радиоволн в атмосфере, в частности резонансное поглощение (например, для кислорода на частоте 60 ГГц поглощение составляет около 14 дБ/км), что вынуждает избегать применения соответствующих частот.

В современных РЛС используются дециметровые, сантиметровые, миллиметровые радиоволны, а в лазерных локаторах - волны оптического диапазона. Согласно рекомендациям Международной организации гражданской авиации ОСАО), радиолокации отводится почти 30% диапазона частот 1...10 ГГц. Широко используются полосы частот, где средняя длина волны А, ср = (20, 10, 5,3) см. В иностранной литературе ширина частотного спектра часто ^оценивается в октавах (интервал, для которого отношение граничных частот fdfi =5 2).

Обозначения участков частот, образующих октавы, приведены в табл. 1.

В диапазоне 30.. Л ООО МГц для работы РЛС выделены определенные полосы частот (например, 137... 144, 216.. .225,400.. .450,890.. .942 МГц). Следует отметить, что метровый диапазон в настоящее время сравнительно редко используется для целей радиолокации. Вместе с тем, так как УКВ, как правило, распространяются лишь в пределах прямой видимости, то для обеспечения загоризонтного радиолокационного наблюдения могут найти применение декаметровые волны.


©2015-2019 сайт
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-04-26