Пайка медных труб своими руками. Пайка медных труб — несколько способов реализации Нагрев при высокотемпературном соединении

Пайка медных труб своими руками. Пайка медных труб — несколько способов реализации Нагрев при высокотемпературном соединении
Пайка медных труб своими руками. Пайка медных труб — несколько способов реализации Нагрев при высокотемпературном соединении

Для алюминия и алюминиевых сплавов применяют различные способы пайки. Пайка бывает:

  • высокотемпературной пайкой — и

По-английски:

  • brazing и
  • soldering, соответственно.
  • К твердым относят припои с высокой температурой плавления (ликвидус выше 450 °С).
  • Мягкие припои плавятся ниже температуры 450 °С.

Рисунок — Ремонт алюминиевой трубы путем пайки мягким припоем

Мягкие припои для алюминия

Поскольку пайка мягкими припоями проводится при температуре ниже 450 °С, то, естественно, в этом случае не применяются твердые припои – припои на основе алюминия. Ранее большинство мягких припоев для пайки алюминия содержали цинк, олово, кадмий и свинец. В настоящее время кадмий и свинец признаны вредными для людей и окружающей среды. Поэтому современные мягкий припой для пайки алюминия — это сплавы на основе олова и цинка.

Оловянно-цинковые сплавы

Для пайки алюминия к алюминию и алюминия к меди специально разработаны оловянно-цинковые сплавы:

  • 91 % олова / 9 % цинка — эвтектический сплав с точкой плавления 199 °С
  • 85 % Sn / 15 % Zn — интервал плавления от 199 до 260 °С
  • 80 % Sn / 20 % Zn — интервал плавления от 199 до 288 °С
  • 70 % Sn / 30 % Zn — интервал плавления от 199 до 316 °С
  • 60 % Sn / 40 % Zn — интервал плавления от 199 до 343 °С

Эвтектические и не эвтектические припои

Эвтектические припои широко применяют для печной пайки и других автоматических систем пайки алюминия. Это позволяет минимизировать применяемый нагрев для тонкостенных изделий путем быстрого плавления и затвердевания при температуре 199 °С.

Интервал затвердевания припоя, когда он находится в полужидком-полутвердом состоянии, позволяет выполнять над изделиями дополнительные операции, пока припой полностью не затвердел.

Повышенное содержание цинка способствует лучшему смачиванию припоя, но с увеличением содержания цинка температура полного затвердевания припоя (ликвидус) значительно возрастает.

Особенности мягкой пайки

Пайка мягкими припоями алюминия отличается от аналогичной пайки других металлов. Оксидная пленка на алюминии – плотная и огнеупорная – требует активных флюсов, которые разработаны специально для алюминия. Температура пайки также должна контролироваться более жестко.

Для алюминия сопротивление коррозии значительно больше зависит от состава припоя, чем для меди, латуни и железных сплавов. Все паяные мягкими припоями швы имеют более низкую коррозионную стойкость, чем швы после твердой пайки или .

Высокая теплопроводность алюминия требует быстрого нагрева, чтобы обеспечить нужную температуру в шве.

Пайка деформируемых алюминиевых сплавов

Практически все алюминиевые сплавы так или иначе могут быть подвергнуты пайке мягкими припоями. Однако их химический состав сильно влияет на легкость пайки, тип припоя, применяемый метод пайки и способность паяного изделия выдерживать различные нагрузки в эксплуатации.

Относительная способность к низкотемпературной пайке – пайке мягкими припоями — основных деформируемых алюминиевых сплавов выглядит следующим образом:

  • отлично паяются: 1100 (АД), 1200 (АД), 1235 (≈АД1), 1350 (АД0Е), 3003 (АМц):
  • хорошо паяются: 3004 (Д12), 5357, 6061 (АД33), 6101, 7072, 8112;
  • средне паяются: 2011, 2014, 2017 (Д1), 2117 (Д18), 2018, 2024 (Д16), 5050, 7005 (1915);
  • плохо паяются: 5052 (АМг2,5), 5056 (≈АМг5), 5083 (АМг4,5), 5086 (АМг4), 5154 (≈АМг3), 7075 (≈В95).

Сплавы, которые содержат более 1 % магния, нельзя удовлетворительно паять с применением органического флюса, а сплавы с более чем 2,5 % магния – с активными флюсами. Сплавы, которые содержат более 5 % магния, нельзя паять ни с каким флюсом.

При пайке алюминиевых сплавов, содержащих более 0,5 % магния, расплавленные оловянные припои проникают между зернами металла. Цинк также способен проникать по границам зерен между зернами алюминиево-магниевых сплавов, но уже при содержании магния более 0,7 %. Это межзеренное проникновение усугубляется наличием напряжений, внешних или внутренних.

Алюминиевые сплавы, легированные магнием и кремнием, менее подвержены межзеренному проникновению, чем бинарные алюминиево-магниевые сплавы.

Алюминиевые сплавы, содержащие медь или цинк в качестве основных легирующих элементов, обычно также содержат достаточное количество других элементов. Большинство этих сплавов подвержены межзеренному проникновению припоя и их обычно не паяют.

Термически упрочненные сплавы обычно имеют более толстую оксидную пленку чем та, которая возникает естественным образом. Эта пленка затрудняет пайку мягкими припоями. Для таких сплавов обычно перед пайкой применяют химическую подготовку поверхности.

Пайка литейных алюминиевых сплавов

Большинство литейных алюминиевых сплавов имеют высокое содержание легирующих элементов, что увеличивает вероятность того, что эти элементы будут растворяться в припое, а припой будет проникать по границам зерен. Поэтому литейные алюминиевые сплавов мягкими припоями паяются плохо.

Кроме того, характерные для литейных сплавов шероховатость поверхности, мельчайшие полости или пористость способствуют удержанию флюсов и делают удаление флюсов после пайки очень трудным.

Три литейных алюминиевых сплава 443.0, 443.2 и 356 относительно хорошо и легко паяются мягкими припоями. Несколько хуже, но еще приемлемо паяются сплавы 213.0, 710.0 и 711.0.

Источники:

  1. Aluminum and Aluminum Alloys, ASM International, 1996
  2. EEA Aluminium Automotive manual — Joining — Brazing, EEA, 2015

Медные трубы можно паять двумя способами: высокотемпературной и низкотемпературной пайкой. Первый вариант пайки применяют в случае повышенной нагрузки на трубопровод из меди. В большинстве бытовых случаев используют низкотемпературную пайку. Ниже будут подробно рассмотрены этапы осуществления пайки медного трубопровода.

Подготовительные работы

В процессе капиллярной пайки медных труб главным условием является присутствие между двух соединяемых поверхностей постоянного зазора. Следовательно, у обеих поверхностей форма должна быть строго цилиндрической. В процессе нарезки труб из меди могут появляться три дефекта, которые могут быть исправлены: заусенцы, деформация трубы, неровный рез. У медной трубы поверхность реза должна быть перпендикулярной оси. Чтобы избежать неровного реза, надо использовать специальный отрезной инструмент. Заусенцы удаляются путем счистки, деформация трубы устраняется посредством ручного шаблона.

На силу сцепления припоя оказывает влияние чистота спаиваемых поверхностей. На поверхности труб могут быть различные загрязнения, окисная пленка. И поверхность фитинга, и поверхность трубы необходимо зачистить металлической щеткой либо наждачной бумагой. После этого, чтобы удалить остатки абразива и загрязнений, поверхности участков пайки протирают сухой ветошью.

Чтобы избежать окисления зачищенной поверхности медной трубы, на нее сразу наносят флюс. Флюсы представляют собой вещества, проявляющие химическую активность и используемые для того, чтобы улучшить растекание жидкого припоя по поверхности паяемой, а также для очистки поверхности металла от загрязнений и окислов. Флюс надо наносить лишь на поясок трубы (без излишков), который будет соединяться с раструбом либо фитингом. Нельзя наносить флюс внутрь раструба либо фитинга либо соединения, поскольку флюс поглощает некоторое количество окислов, увеличивая при этом свою вязкость.

Когда флюс нанесен, рекомендуется сразу же соединять детали – это позволит исключить попадание посторонних частиц на влажную поверхность. Если пайка медных труб по какой-либо причине будет выполняться позже, тогда детали лучше собрать. Советуем трубу повернуть в раструбе либо фитинге, либо же наоборот – раструб вокруг оси трубы. Это позволит быть уверенным в том, что флюс в монтажном зазоре распределился равномерно и почувствовать, что труба достигла упора. После этого ветошью надо удалить видимые остатки флюса. Теперь соединение считается готовым к нагреву.

Обычно для мягкой пайки труб из меди нагрев осуществляют посредством пропановых горелок (пропан-бутан-воздух либо пропан-воздух). При данном способе пайки температура разогрева составляет от 2000С до 2500С. Между поверхностью соединения и пламенем пятно контакта постоянно перемещают. Это позволяет достигать равномерного нагревания всего соединения. При этом иногда прутком припоя касаются капиллярной щели. Достаточность нагрева с практикой определяют по окраске поверхности и возникновению дыма флюса. Электронагревание соединения принципиально в пайке медных труб не отличается.

Как правило, для мягкой пайки используют припои типа S-Sn97Ag5 (L-SnAg5) либо S-Sn97Cu3 (L-SnCu3), которые обладают высокими технологическими свойствами, а также обеспечивают высокую коррозионную стойкость и прочность соединения.

Если во время контрольного касания прутком припой еще не плавится, то нагрев продолжают. Не следует прогревать пруток подаваемого припоя. Помните об обязательном перемещении пламени – тем самым вы избегните перегревания какого-либо отдельного участка соединения. Когда припой начал плавиться, надо отвести пламя в строну и позволить припою наполнить капиллярный (монтажный) зазор.

Благодаря капиллярному эффекту заполнение капиллярного (монтажного) зазора осуществляется полностью и автоматически. Не надо вводить излишнее количество припоя, т.к. это может вызвать затекание излишков внутрь соединения.

При применении прутков припоя со стандартным диаметром от 3мм до 2,5мм, количество припоя примерно равняется диаметру медной трубы. Требуемый участок припоя, как правило, по длине отгибают в форме буквы «Г».

Твердую пайку медных труб осуществляют только газопламенным способом (ацетилен-воздух, пропан-кислород, допускается ацетилен-кислород), поскольку разогрев труб должен достигать температуры 7000С. Применение медно-фосфорного припоя позволяет осуществлять пайку без флюса. Благодаря тому, что паечный шов получается значительно прочнее, то ширину спаивания можно немного уменьшить (в сравнении с пайкой мягкой). Чтобы производить твердую пайку, требуется наличие высокой квалификации и опыта, иначе трубу можно легко перегреть и создать разрыв.

Надо, чтобы пламя горелки было «нормальным» (нейтральным). В сбалансированной газовой смеси содержится равное количество газообразного топлива и кислорода, благодаря чему пламя только нагревает металл и иного воздействия не оказывает. В случае сбалансированной газовой смеси факел пламени горелки обладает ярко синим цветом и небольшой величиной.

Соединяемые элементы труб надо нагревать равномерно по всей длине и окружности соединения. Соединяющиеся трубы в месте их соединения нагревают пламенем горелки до появления темно-вишневого цвета (температура от 7500С до 9000С). При этом надо равномерно распределять теплоту. Пайку можно выполнять в каком угодно пространственном расположении соединяемых элементов.

В случае, когда труба внутренняя уже разогрета до паечной температуры, а труба наружная обладает более низкой температурой, то расплавившийся припой перемещается к источнику теплоты, а в зазор между соединяемыми элементами не затекает.

Если же всю поверхность концов соединяемых медных труб разогревать равномерно, то поданный к краю раструба припой расплавляется под влиянием их теплоты, после чего равномерно идет в зазор соединения. Достаточно прогретыми для пайки считаются те трубы, которые плавят контактирующий с ними пруток твердого припоя. Чтобы улучшить пайку, пруток припоя предварительно немного прогревают пламенем горелки.
Промышленностью выпускаются малогабаритные газовые горелки, оснащенные одноразовыми баллончиками. Посредством них можно выполнять нагрев и для мягкой, и для твердой пайки.

Финишные работы

После того, как паечные работы проведены, соединению надо обеспечить неподвижность до того момента, как затвердеет припой. Когда соединение остынет, надо изнутри и снаружи ветошью удалить остатки флюса методом промывки. Затем систему опрессовывают на наличие подтеканий. Опрессовку осуществляют способом создания в изготовленном трубопроводе давления.

Согласно классификации, приведенной в государственном стандарте, припои разделяются на группы по нескольким признакам, одним из которых является температура плавления. В процессе пайки при температуре, превышающей 450 ℃, могут применяться только высокотемпературные припои.

Другие составы такой термической нагрузки не выдержат. Высокотемпературная пайка осуществляется в разных режимах. При проведении процесса до 1100 ℃ пригодны к использованию составы со средней плавкостью.

В интервале от 1100 ℃ до 1850 ℃ следует применять высокоплавкие смеси. При более высоких температурных показателях годятся только тугоплавкие композиции.

Удивительно, что, несмотря на классификацию ГОСТа, даже в учебниках существует разная подача материалов.

Существует большое количество готовых композиций, рекомендуемых к применению при повышенных температурах. Часто в состав высокотемпературных припоев входит:

  • медь;
  • серебро;
  • цинк;
  • фосфор.

Для изменения свойств в высокотемпературные сплавы добавляют кремний, германий и некоторые другие элементы. Низкотемпературными считаются припои:

  • на основе свинца;
  • олова;
  • с добавлением сурьмы.

Выбор конкретных припоев определяется видом сплава, из которого сделаны детали, и условиями пайки.

Иногда в низкотемпературные припои вводят цинк для повышения коррозионной стойкости шва, и разрабатывают специальные низкотемпературные сплавы для конкретных условий использования. В быту низкотемпературную пайку проводят с применением паяльника, а высокотемпературную – газовой горелкой.

Для жаропрочных сплавов

Высокотемпературные припои применяют для нержавеющих и жаропрочных стальных сплавов. Пайку таких сплавов проводят с применением припоев на основе меди, меди с цинком, серебра.

Процесс осуществляется в печах в окружении водорода или паров раствора аммиака. При пайке с помощью меди, медно-цинковых композиций в качестве флюсовой добавки используют буру.

Серебряные высокотемпературные припои можно применять только в сочетании с активными флюсами. Полученные таким методом швы выдерживают нагревание до 600 ℃. Соединения, полученные с медьсодержащими составами, высокие температуры переносят хуже.

В качестве альтернативы иногда применяют никель-хромовые припои с платиной или палладием. Такие высокотемпературные материалы стоят дороже. Швы обладают большой термической и коррозионной устойчивостью.

При наличии на стальных изделиях из нержавеющих и жаропрочных сплавов больших зазоров, хорошее соединение дают порошковые припои, содержащие компоненты, идентичные химическим элементам сплавов.

Полученные швы выдерживают нагревание до 1000 ℃. Процесс проводят в вакуумированной среде, наполненной аргоном и газообразным флюсом.

Для алюминия и его сплавов

Алюминий и его сплавы – материалы, с которыми работать сложно. Низкотемпературная усложняется наличием тугоплавкого поверхностного слоя оксидов.

Помочь могли бы активные флюсы, но их применение чревато усиленным образованием продуктов коррозии на месте шва. Разработаны специальные технологические приемы проведения спаивания по предварительно нанесенным покрытиям.

Помимо этого для алюминия используют низкотемпературные составы с добавками дорогостоящего галлия.

Высокотемпературную пайку проводят посредством применения высокотемпературных припоев на основе алюминия с добавками меди, цинка, кремния.

Чаще всего для спаивания алюминиевых деталей используют составы 34А, а также силумин. Для каждого из этих припоев предназначен соответствующий флюс. Припой 34А способствует образованию шва, устойчивого при 525 ℃.

Высокотемпературная припойная масса из алюминия и кремния позволяет получить соединение, выдерживающее 577 ℃. При проведении работы применяют флюсы, сделанные из хлоридов щелочных металлов. Прочность образованных швов не всегда соответствует требованиям производства.

При необходимости получения соединений высокой термической и коррозионной стойкости пайку проводят в глубоком вакууме в окружении паров магния.

Процесс выполняется без флюсов по сложной технологии. В качестве припоя применяют силумин. Полученный таким методом шов выдерживает значительные нагрузки.

Работа с медью

В системах водоснабжения, отопления и некоторых производственных схемах осуществляется монтаж медных труб, не предназначенных для повышенной термической нагрузки. В таких ситуациях для пайки допустимо применение низкотемпературного припоя.

Трубопроводы большого диаметра, сделанные из медных сплавов, иногда подвергаются большому нагреванию. В таких случаях для меди и сплавов на ее основе нужны специальные тугоплавкие композиты.

Обычно применяют высокотемпературные припои на медной, серебряной основе, содержащие другие металлы, а также кремний или фосфор.

Составы из меди и цинка обозначают сочетанием букв ПМЦ и числами, указывающими на процентное содержание меди. Такие высокотемпературные припои обладают многофункциональным действием, пригодны для работы с другими сплавами.

Образующиеся швы обладают умеренной стойкостью к механическим нагрузкам. Для улучшения прочностных качеств соединений припойные средства легируют различными добавками.

На основе меди и фосфора

Высокотемпературные составы на основе меди и фосфора обозначаются буквосочетанием ПМФ и числами, указывающими на концентрацию фосфора в общей массе.

Средство переходит в жидкое состояние при температуре 850 ℃, позволяет получать швы хорошей коррозионной стойкости. Припой применим не только для медных, но и ювелирных изделий из благородных металлов.

Только стали нельзя паять таким методом. В результате на стальных швах образуются фосфиты, которые уменьшаю механическую прочность шва, приводят к образованию хрупкого соединения. Достоинство медьсодержащих припоев с фосфором заключается в возможности проведения пайки без флюсов.

Для работы с медными, некоторыми стальными, чугунными деталями также рекомендуются высокотемпературные припои на основе латуни. Это может быть чистый латунный сплав или композит с оловом и кремнием. Средства обладают текучестью, достаточной для образования прочного, стойкого шва.

На основе серебра

Очень хорошие свойства имеют высокотемпературные припойные средства на основе серебра. Они подходят практически для всех металлических изделий. Единственный недостаток – цена благородного металла лимитирует возможности частого применения.

Существуют сплавы (ПСр-15) с невысокой концентрацией серебра. Они стоят меньше, чем концентрированные композиции, могут применяться чаще.

Составы (ПСр-45) с содержанием серебра – 45 %, меди – 30 %, цинка – 25 % обладают очень хорошими свойствами: вязкостью, текучестью, ковкостью, стойкостью к окислению и механическим воздействиям. Эти сплавы применяются по необходимости, при наличии финансовой возможности.

Варьируя соотношение указанных компонентов, можно изменять максимальные температурные значения, которые выдержит будущий шов. Еще лучшие качества демонстрирует высокотемпературная композиция с содержанием серебра 65 %, но стоит она очень дорого.

Работа с титаном

Для пайки тугоплавких металлов и сплавов возможностей большинства описанных припоев недостаточно. Нужны совершенно другие высокотемпературные компоненты. Таким химическим элементом является титан, имеющий температуру плавления около 1700 °С.

Он образует прочные швы даже на изделиях с остатками оксидов. Процесс нужно проводить в атмосфере чистого аргона или гелия при значительном понижении давления в рабочей зоне.

Высокотемпературные составы из титана и меди, никеля, кобальта, других металлов проявляют свойства эвтектических систем. Сами по себе они обладают хрупкостью, применяются в виде порошков, паст.

Проволоку, ленты, полосы их этих сплавов изготовить не удается. Работать паяльником с тугоплавкими композитами невозможно.

В некоторых случаях на практике реализуют технологию контактного плавления. В зазор изделия, подлежащего пайке, помещают фольгу из титана или его сплавов.

При достижении температуры 960 ℃ начинается, а при показаниях 1100 ℃ заканчивается образование эвтектического сплава, играющего роль припоя.

Изделия, подлежащие эксплуатации при очень высоких температурах, подлежат спайке при помощи сплавов с добавками кремния, железа. Для реализации таких технологических процессов нужны мощные источники энергии.

Требуемой температуры достигают в вакуумных печах, плазменными горелками. Можно применять с этой целью электроконтактный способ или воздействие электронным лучом.

Высокотемпературное спаивание деталей – трудоемкий процесс, требующий специальных знаний и квалификации. Располагая хорошими вспомогательными средствами, оборудованием можно справиться с производственной задачей любой степени сложности.

Следующая страница>>

§ 10. Пайка металлов. Высокотемпературная и низкотемпературная пайка. . Флюсы для пайки медью, медно-цинковыми и медно-никелевыми припоями.

Пайкой называется процесс получения неразъемного соединения металлов и их сплавов без их расплавления путем заполнения зазора между ними припоем - промежуточным металлом или сплавом в жидком состоянии.

Различают два основных вида пайки: высокотемпературную и низкотемпературную (ГОСТ 17349-71). Температура плавления припоев для низкотемпературной пайки составляет ниже 550° С, а для высокотемпературной пайки - свыше 550° С. При низкотемпературной пайке предел прочности соединения составляет 5-7 кгс/мм 2 , а при высокотемпературной пайке - до 50 кгс/см 2 .

Низкотемпературную пайку осуществляют обычно электрическими паяльниками, а высокотемпературную - горелками, работающими на ацетилене или газах - заменителях ацетилена.

В основу припоев с низкой температурой - плавления (мягких припоев) входят свинец, олово, сурьма, а в основу припоев с высокой температурой плавления (твердых припоев)-медь, цинк, кадмий и серебро.

Типы паяльных швов приведены на рис. 95.

Рис. 95. Типы паяных соединений (швов) :

а - стыковые, б - внахлестку, в - с отбортовкой, г - втулочные, д - специальные (для заплат на алюминиевых деталях)

Для высокотемпературной пайки применяют медно-цинковые припои ПМЦ-36, ПМЦ-48, ПМЦ-54 и др.

Пайка производится с применением флюсов - активных химичеких веществ, предназначенных для очистки и поддержания в чистоте поверхностей паяемого металла с целью снижения поверхностного натяжения и улучшения растекания жидкого припоя. Составы некоторых флюсов для пайки приведены в табл. 48.

48. Флюсы для пайки медью, медно-цинковыми и медно-никелевыми припоями

Компоненты Состав, % Область применения
Кислота борная
Бура
Кальций фтористый
70
21
9

Пайка конструкционных нержавеющих и жаропрочных сталей латунью и жаропрочными припоями

Бура 100

Пайка углеродистых сталей, чугуна, меди, твердых сплавов медно-цинковыми припоями

Бура
Кислота борная
80
20

Пайка низкоуглеродистых сталей и медных сплавов

Бура
Кислота борная
50
50

Пайка нержавеющих сталей, твердых и жароупорных сплавов медно-цинковыми и медно-никелевыми припоями. Флюс разводят на растворе хлористого цинка

Кислота борная
Бура
Кальций фтористый
78
12
10

Пайка медными припоями углеродистых, нержавеющих и жароупорных сталей, твердых и медных сплавов

Бура
Кислота борная
Кальций фтористый
50
10
40

Пайка твердых сплавов медью, медно-цинковыми и медно-никелевыми припоями

Бура
Калий марганцевокислый
95
5

Пайка чугуна медью и медно-цинковыми припоями. Флюс разводят на концентрированном растворе хлористого цинка

Бура
Кальций фтористый
Натрий фтористый
75
10
15

Пайка припоями на медной основе

Кислота борная
Бура
Кальций фтористый
Лигатура (4% Mg, 48% Cu, 48% Al)
80
14
5,5
0,5

Пайка нержавеющих сталей и жаропрочных сплавов латунью и другими припоями с температурой плавления 850-1100° С

Бура
Кислота борная
Кальций хлористый
58
40
2

Пайка латуни и меди

Домашние мастера стараются выполнять строительные и ремонтные работы самостоятельно, что позволяет не только сэкономить семейный бюджет, но и быть абсолютно уверенным в качественном результате. Поэтому им приходиться овладевать новыми для себя методиками и технологиями – такими, как пайка медных труб.

Мы расскажем, как производится сборка и соединения коммуникаций из медных труб. У нас вы узнаете, какие расходные материалы и инструменты потребуются исполнителю. Полезные даже в быту навыки дадут возможность самостоятельно собирать трубопроводы с отличными эксплуатационными характеристиками.

Медные трубопроводы на практике используются редко. Причина тому – довольно высокая стоимость материалов. Однако трубопроводы из меди по праву считаются лучшими.

Этот металл превосходит все остальные материалы по термостойкости, гибкости и долговечности. после сборки можно заливать в бетон, прятать в стены и т.д. В процессе эксплуатации с ними ничего не случится.

Трубопроводы из меди считаются лучшими, так как срок их службы сопоставим со сроком эксплуатации здания, в котором они установлены

Это стоит учесть, выбирая материал для обустройства отопления или водопровода. В расчете на длительную эксплуатацию более высокие затраты вполне окупаемы. Помимо отличных эксплуатационных характеристик, которыми обладает медь, она достаточно проста в монтаже. «Страшные сказки» про трудности в пайке чаще всего преувеличены.

Медь достаточно просто паять. Ее поверхность не нуждается в применении агрессивных средств при очистке. Множество легкоплавких металлов имеет с нею высокую адгезию, что упрощает выбор припоя.

Дорогостоящие флюсы меди не нужны, поскольку при плавлении металла не происходит бурных реакций с кислородом. В процессе пайки труба не деформируется, ее форма и размеры остаются неизменными. Получившийся шов при необходимости можно распаять.

Способы паяния деталей из меди

Пайка считается оптимальным методом соединения медных деталей. В процессе работы расплавленный припой заполняет небольшой зазор между элементами, образуя при этом надежное соединение.

Наиболее распространены два способа получения таких соединений. Это высокотемпературная и низкотемпературная капиллярная пайка. Разберем, чем же они отличаются друг от друга.

Галерея изображений