Модуль силы упругости пружины формула. Определение и формула закона Гука

Модуль силы упругости пружины формула. Определение и формула закона Гука
Модуль силы упругости пружины формула. Определение и формула закона Гука

На все тела, находящиеся вблизи Земли, действует ее притяжение. Под действием силы тяжести падают на Землю капли дождя, снежинки, оторвавшиеся от веток листья.

Но когда тот же снег лежит на крыше, его по-прежнему притягивает Земля, однако он не проваливается сквозь крышу, а остается в покое. Что препятствует его падению? Крыша. Она действует на снег с силои, равной силе тяжести, но направленной в противоположную сторону. Что это за сила?

На рисунке 34, а изображена доска, лежащая на двух подставках. Если на ее середину поместить гирю, то под действием силы тяжести гиря начнет двигаться, но через некоторое время, прогнув доску, остановится (рис. 34, б ). При этом сила тяжести окажется уравновешенной силой, действующей на гирю со стороны изогнутой доски и направленной вертикально вверх. Эта сила называется силой упругости . Сила упругости возникает при деформации. Деформация - это изменение формы или размеров тела. Одним из видов деформации является изгиб. Чем больше прогибается опора, тем больше сила упругости, действующая со стороны этой опоры на тело. Перед тем как тело (гирю) положили на доску, эта сила отсутствовала. По мере движения гири, которая все сильнее и сильнее прогибала свою опору, возрастала и сила упругости. В момент остановки гири сила упругости достигла силы тяжести и их равнодействующая стала равной нулю.

Если на опору поместить достаточно легкий предмет, то ее деформация может оказаться столь незначительной, что никакого изменения формы опоры мы не заметим. Но деформация все равно будет! А вместе с ней будет действовать и сила упругости, препятствующая падению тела, находящегося на данной опоре. В подобных случаях (когда деформация тела незаметна и изменением размеров опоры можно пренебречь) силу упругости называют силой реакции опоры .

Если вместо опоры использовать какой-либо подвес (нить, веревку, проволоку, стержень и т. д.), то прикрепленный к нему предмет также может удерживаться в покое. Сила тяжести и здесь будет уравновешена противоположно направленной силой упругости. Сила упругости при этом возникает из-за того, что подвес под действием прикрепленного к нему груза растягивается. Растяжение еще один вид деформации.

Сила упругости возникает и при сжатии . Именно она заставляет распрямляться сжатую пружину и толкать прикрепленное к ней тело (см. рис. 27, б ).

Большой вклад в изучение силы упругости внес английский ученый Р. Гук. В 1660 г., когда ему было 25 лет, он установил закон, названный впоследствии его именем. Закон Гука гласит:

Сила упругости, возникающая при растяжении или сжатии тела, пропорциональна его удлинению.

Если удлинение тела, т. е. изменение его длины, обозначить через х , а силу упругости - через F упр , то закону Гука можно придать следующую математическую форму:

F упр = kx ,

где k - коэффициент пропорциональности, называемый жесткостью тела. У каждого тела своя жесткость. Чем больше жесткость тела (пружины, проволоки, стержня и т. д.), тем меньше оно изменяет свою длину под действием данной силы.

Единицей жесткости в СИ является ньютон на метр (1 Н/м).

Проделав ряд экспериментов, подтвердивших данный закон, Гук отказался от его публикации. Поэтому в течение долгого времени никто не знал о его открытии. Даже спустя 16 лет, все еще не доверяя своим коллегам, Гук в одной из своих книг привел лишь зашифрованную формулировку (анаграмму) своего закона. Она имела вид

Выждав два года, чтобы конкуренты могли сделать заявки о своих открытиях, он наконец расшифровал свой закон. Анаграмма расшифровывалась так:

ut tensio, sic vis

(что в переводе с латинского означает: каково растяжение, такова и сила). «Сила любой пружины,- писал Гук,- пропорциональна ее растяжению».

Гук изучал упругие деформации. Так называют деформации, которые исчезают после прекращения внешнего воздействия. Если, например, пружину несколько растянуть, а затем отпустить, то она снова примет свою первоначальную форму. Но ту же пружину можно растянуть на столько, что, после того как ее отпустят, она так и останется растянутой. Деформации, которые не исчезают после прекращения внешнего воздействия, называют пластическими .

Пластические деформации применяют при лепке из пластилина и глины, при обработке металлов - ковке, штамповке и т. д.

Для пластических деформаций закон Гука не выполняется.

В древние времена упругие свойства некоторых материалов (в частности, такого дерева, как тис) позволили нашим предкам изобрести лук - ручное оружие, предназначенное для метания стрел с помощью силы упругости натянутой тетивы.

Появившись примерно 12 тысяч лет назад, лук просуществовал на протяжении многих веков как основное оружие почти всех племен и народов мира. До изобретения огнестрельного оружия лук являлся самым эффективным боевым средством. Английские лучники могли пускать до 14 стрел в минуту, что при массовом использовании луков в бою создавало целую тучу стрел. Например, число стрел, выпущенных в битве при Азенкуре (во время Столетней войны), составило примерно 6 миллионов!

Широкое распространение этого грозного оружия в средние века вызвало обоснованный протест со стороны определенных кругов общества. В 1139 г. собравшийся в Риме Латеранский (церковный) собор запретил применение этого оружия против христиан. Однако борьба за «лучное разоружение» не имела успеха, и лук как боевое оружие продолжал использоваться людьми еще на протяжении пятисот лет.

Совершенствование конструкции лука и создание самострелов (арбалетов) привело к тому, что выпущенные из них стрелы стали пробивать любые доспехи. Но военная наука не стояла на месте. И в XVII в. лук был вытеснен огнестрельным оружием.

В наше время стрельба из лука является лишь одним из видов спорта.

1. В каких случаях возникает сила упругости? 2. Что называют деформацией? Приведите примеры деформаций. 3. Сформулируйте закон Гука. 4. Что такое жесткость? 5. Чем отличаются упругие деформации от пластических?

Это сила возникает в результате деформации (изменения первоначального состояния вещества). Например, когда растягиваем пружину, мы увеличиваем расстояние между молекулами материала пружины. Когда сжимаем пружину - уменьшаем. Когда перекручиваем или сдвигаем. Во всех этих примерах возникает сила, которая препятствует деформации - сила упругости.

Закон Гука

Сила упругости направлена противоположно деформации.

Так как тело представляем в виде материальной точки, силу можно изображать с центра

При последовательном соединении, например, пружин жесткость рассчитывается по формуле

При параллельном соединении жесткость

Жесткость образца. Модуль Юнга.

Модуль Юнга характеризует упругие свойства вещества. Это постоянная величина, зависящая только от материала, его физического состояния. Характеризует способность материала сопротивляться деформации растяжения или сжатия. Значение модуля Юнга табличное.

Вес тела

Вес тела - это сила, с которой предмет воздействует на опору. Вы скажете, так это же сила тяжести! Путаница происходит в следующем: действительно часто вес тела равен силе тяжести, но это силы совершенно разные. Сила тяжести - сила, которая возникает в результате взаимодействия с Землей. Вес - результат взаимодействия с опорой. Сила тяжести приложена в центре тяжести предмета, вес же - сила, которая приложена на опору (не на предмет)!

Формулы определения веса нет. Обозначается эта силы буквой .

Сила реакции опоры или сила упругости возникает в ответ на воздействие предмета на подвес или опору, поэтому вес тела всегда численно одинаков силе упругости, но имеет противоположное направление.

Сила реакции опоры и вес - силы одной природы, согласно 3 закону Ньютона они равны и противоположно направлены. Вес - это сила, которая действует на опору, а не на тело. Сила тяжести действует на тело.

Вес тела может быть не равен силе тяжести. Может быть как больше, так и меньше, а может быть и такое, что вес равен нулю. Это состояние называется невесомостью . Невесомость - состояние, когда предмет не взаимодействует с опорой, например, состояние полета: сила тяжести есть, а вес равен нулю!

Определить направление ускорения возможно, если определить, куда направлена равнодействующая сила.

Обратите внимание, вес - сила, измеряется в Ньютонах. Как верно ответить на вопрос: "Сколько ты весишь"? Мы отвечаем 50 кг, называя не вес, а свою массу! В этом примере, наш вес равен силе тяжести, то есть примерно 500Н!

Перегрузка - отношение веса к силе тяжести

Сила Архимеда

Сила возникает в результате взаимодействия тела с жидкость (газом), при его погружении в жидкость (или газ). Эта сила выталкивает тело из воды (газа). Поэтому направлена вертикально вверх (выталкивает). Определяется по формуле:

В воздухе силой Архимеда пренебрегаем.

Если сила Архимеда равна силе тяжести, тело плавает. Если сила Архимеда больше, то оно поднимается на поверхность жидкости, если меньше - тонет.

Электрические силы

Существуют силы электрического происхождения. Возникают при наличии электрического заряда. Эти силы, такие как Сила Кулона, сила Ампера, сила Лоренца.

Законы Ньютона

I закон Ньютона

Существуют такие системы отсчета, которые называются инерциальными, относительно которых тела сохраняют свою скорость неизменной, если на них не действуют другие тела или действие других сил скомпенсированно.

II закон Ньютона

Ускорение тела прямопропорционально равнодействующей сил, приложенных к телу, и обратно пропорционально его массе:

III закон Ньютона

Силы, с которыми два тела действуют друг на друга, равны по модулю и противоположны по направлению.

Локальная система отсчёта - это система отсчёта, которая может считаться инерциальной, но лишь в бесконечно малой окрестности какой-то одной точки пространства-времени, или лишь вдоль какой-то одной незамкнутой мировой линии.

Преобразования Галилея. Принцип относительности в классической механике.

Преобразования Галилея. Рассмотрим две системы отсчета движущиеся друг относительно друга и с постоянной скоростью v 0 .Одну из этих систем обозначим буквой K. Будем считать неподвижной. Тогда вторая система Kбудет двигаться прямолинейно и равномерно. Выберем координатные оси x,y,z системы K и x",y",z" системы K" так что оси x и x" совпадали, а оси y и y" , z и z", были параллельны друг другу. Найдем связь между координатами x,y,z некоторой точки P в системе K и координатами x",y",z" той же точки в системе K". Если начать отсчёт времени с того момента, когда начало координат системы, совпадали, то x=x"+v 0 , кроме того, очевидно, что y=y", z=z". Добавим к этим соотношениям принятое в классической механике предположение, что время в обеих системах течёт одинаковым образом, то есть t=t". Получим совокупность четырёх уравнений: x=x"+v 0 t;y=y";z=z";t=t", названных преобразованиями Галилея.Механический принцип относительности. Положение о том, что все механические явления в различных инерциальных системах отсчёта протекают одинаковым образом, вследствие чего никакими механическими опытами невозможно установить, покоится ли система или движется равномерно и прямолинейно носит названия принцип относительности Галилея.Нарушение классического закона сложения скоростей. Исходя из общего принципа относительности (никаким физическим опытом нельзя отличить одну инерциальною систему от другой), сформулированным Альбертом Эйнштейном, Лоуренс изменил преобразования Галилиея и получил: x"=(x-vt)/(1-v 2 /c 2); y"=y; z"=z; t"=(t-vx/c 2)/(1-v 2 /c 2). Эти преобразования называются преобразованиями Лоуренса.

Подвесьте пружину (рис. 1, а) и потяните ее вниз. Растянутая пружина будет действовать на руку с некоторой силой (рис. 1, б). Это сила упругости.

Рис. 1. Опыт с пружиной: а — пружина не растянута; б — растянутая пружина действует на руку с силой, направленной вверх

Из-за чего возникает сила упругости? Легко заметить, что сила упругости действует со стороны пружины только тогда, когда она растянута или сжата, то есть ее форма изменена. Изменение формы тела называют деформацией.

Сила упругости возникает вследствие деформации тела.

В деформированном теле расстояния между частицами немного изменяются: если тело растянуто, то расстояния увеличиваются, а если сжато, то уменьшаются. В результате взаимодействия частиц и возникает сила упругости. Она направлена всегда так, чтобы уменьшить деформацию тела.

Всегда ли деформацию тела можно заметить? Деформацию пружины легко заметить. А деформируется ли, например, стол под лежащей на нем книгой? Казалось бы, должен: ведь иначе со стороны стола не возникла бы сила, которая не дает книге провалиться сквозь стол. Но на глаз деформация стола не заметна. Однако это еще не означает, что ее нет!

Поставим опыт

Установим на столе два зеркала и направим на одно из них узкий пучок света так, чтобы после отражения от двух зеркал на стене появился маленький световой зайчик (рис. 2). Если коснуться рукой одного из зеркал, зайчик на стене сместится, потому что его положение очень чувствительно к положению зеркал — в этом и заключается «изюминка» опыта.

Положим теперь на середину стола книгу. Мы увидим, что зайчик на стене тотчас сместился. А это означает, что стол действительно чуть прогнулся под лежащей на нем книгой.

Рис. 2. Этот опыт доказывает, что стол чуть-чуть прогибается под лежащей на нем книгой. Из-за этой деформации и возникает сила упругости, поддерживающая книгу

На этом примере мы видим, как с помощью искусно поставленного опыта можно сделать незаметное заметным.

Итак, при незаметных на глаз деформациях твердых тел могут возникать большие силы упругости: благодаря действию именно этих сил мы не проваливаемся сквозь пол, опоры держат мосты, а мосты поддерживают идущие по ним тяжелые грузовики и автобусы. Но деформация пола или опор моста на глаз незаметна!

На какие из окружающих вас тел действуют силы упругости? Со стороны каких тел они приложены? Заметна ли на глаз деформация этих тел?

Почему не падает лежащее на ладони яблоко? Сила тяжести действует на яблоко не только когда оно падает, но и когда оно лежит на ладони.

Почему же тогда лежащее на ладони яблоко не падает? Потому, что на него действует теперь не только сила тяжести Fт, но и сила упругости со стороны ладони (рис. 3).

Рис. 3. На яблоко, лежащее на ладони, действуют две силы: сила тяжести и сила нормальной реакции. Эти силы уравновешивают друг друга

Эту силу называют силой нормальной реакции и обозначают N. Такое название силы объясняется тем, что она направлена перпендикулярно поверхности, на которой находится тело (в данном случае — поверхности ладони), а перпендикуляр называют иногда нормалью.

Действующие на яблоко сила тяжести и сила нормальной реакции уравновешивают друг друга: они равны по модулю и направлены противоположно.

На рис. 3 мы изобразили эти силы приложенными в одной точке — так делают, если размерами тела можно пренебречь, то есть можно заменить тело материальной точкой.

Вес

Когда яблоко лежит на ладони, вы чувствуете, что оно давит на ладонь, то есть действует на ладонь с силой, направленной вниз (рис. 4, а). Эта сила — вес яблока.

Вес яблока можно почувствовать также, подвесив яблоко на нити (рис. 4, б).

Рис. 4. Вес яблока Р приложен к ладони (а) или нити, на которой подвешено яблоко (б)

Весом тела называют силу, с которой тело давит на опору или растягивает подвес вследствие притяжения тела Землей.

Вес обозначают обычно Р. Расчеты и опыт показывают, что вес покоящегося тела равен действующей на это тело силе тяжести: Р = Fт = gm.

Решим задачу

Чему равен вес покоящейся килограммовой гири?

Итак, числовое значение веса тела, выраженное в ньютонах, примерно в 10 раз больше числового значения массы этого же тела, выраженного в килограммах.

Чему равен вес человека массой 60 кг? Чему равен ваш вес?

Как связаны вес и сила нормальной реакции? На рис. 5 изображены силы, с которыми действуют друг на друга ладонь и лежащее на ней яблоко: вес яблока Р и сила нормальной реакции N.

Рис. 5. Силы, с которыми действуют друг на друга яблоко и ладонь

В курсе физики 9-го класса будет показано, что силы, с которыми тела действуют друг на друга, всегда равны по модулю и противоположны по направлению.

Приведите пример уже известных вам сил, которые уравновешивают друг друга.

На столе лежит книга массой 1 кг. Чему равна сила нормальной реакции, действующая на книгу? Со стороны какого тела она приложена и как она направлена?

Чему равна действующая на вас сейчас сила нормальной реакции?

Необходимо знать точку приложения и направление каждой силы. Важно уметь определить какие именно силы действуют на тело и в каком направлении. Сила обозначается как , измеряется в Ньютонах. Для того, чтобы различать силы, их обозначают следующим образом

Ниже представлены основные силы, действующие в природе. Придумывать не существующие силы при решении задач нельзя!

Сил в природе много. Здесь рассмотрены силы, которые рассматриваются в школьном курсе физики при изучении динамики. А также упомянуты другие силы, которые будут рассмотрены в других разделах.

Сила тяжести

На каждое тело, находящееся на планете, действует гравитация Земли . Сила, с которой Земля притягивает каждое тело, определяется по формуле

Точка приложения находится в центре тяжести тела. Сила тяжести всегда направлена вертикально вниз .


Сила трения

Познакомимся с силой трения. Эта сила возникает при движении тел и соприкосновении двух поверхностей. Возникает сила в результате того, что поверхности, если рассмотреть под микроскопом, не являются гладкими, как кажутся. Определяется сила трения по формуле:

Сила приложена в точке соприкосновения двух поверхностей. Направлена в сторону противоположную движению.

Сила реакции опоры

Представим очень тяжелый предмет, лежащий на столе. Стол прогибается под тяжестью предмета. Но согласно третьему закону Ньютона стол воздействует на предмет с точно такой же силой, что и предмет на стол. Сила направлена противоположно силе, с которой предмет давит на стол. То есть вверх. Эта сила называется реакцией опоры. Название силы "говорит" реагирует опора . Эта сила возникает всегда, когда есть воздействие на опору. Природа ее возникновения на молекулярном уровне. Предмет как бы деформировал привычное положение и связи молекул (внутри стола), они, в свою очередь, стремятся вернуться в свое первоначальное состояние, "сопротивляются".

Абсолютно любое тело, даже очень легкое (например,карандаш, лежащий на столе), на микроуровне деформирует опору. Поэтому возникает реакция опоры.

Специальной формулы для нахождения этой силы нет. Обозначают ее буквой , но эта сила просто отдельный вид силы упругости, поэтому она может быть обозначена и как

Сила приложена в точке соприкосновения предмета с опорой. Направлена перпендикулярно опоре.


Так как тело представляем в виде материальной точки, силу можно изображать с центра

Сила упругости

Это сила возникает в результате деформации (изменения первоначального состояния вещества). Например, когда растягиваем пружину, мы увеличиваем расстояние между молекулами материала пружины. Когда сжимаем пружину - уменьшаем. Когда перекручиваем или сдвигаем. Во всех этих примерах возникает сила, которая препятствует деформации - сила упругости.

Закон Гука


Сила упругости направлена противоположно деформации.

Так как тело представляем в виде материальной точки, силу можно изображать с центра

При последовательном соединении, например, пружин жесткость рассчитывается по формуле

При параллельном соединении жесткость

Жесткость образца. Модуль Юнга.

Модуль Юнга характеризует упругие свойства вещества. Это постоянная величина, зависящая только от материала, его физического состояния. Характеризует способность материала сопротивляться деформации растяжения или сжатия. Значение модуля Юнга табличное.

Подробнее о свойствах твердых тел .

Вес тела

Вес тела - это сила, с которой предмет воздействует на опору. Вы скажете, так это же сила тяжести! Путаница происходит в следующем: действительно часто вес тела равен силе тяжести, но это силы совершенно разные. Сила тяжести - сила, которая возникает в результате взаимодействия с Землей. Вес - результат взаимодействия с опорой. Сила тяжести приложена в центре тяжести предмета, вес же - сила, которая приложена на опору (не на предмет)!

Формулы определения веса нет. Обозначается эта силы буквой .

Сила реакции опоры или сила упругости возникает в ответ на воздействие предмета на подвес или опору, поэтому вес тела всегда численно одинаков силе упругости, но имеет противоположное направление.



Сила реакции опоры и вес - силы одной природы, согласно 3 закону Ньютона они равны и противоположно направлены. Вес - это сила, которая действует на опору, а не на тело. Сила тяжести действует на тело.

Вес тела может быть не равен силе тяжести. Может быть как больше, так и меньше, а может быть и такое, что вес равен нулю. Это состояние называется невесомостью . Невесомость - состояние, когда предмет не взаимодействует с опорой, например, состояние полета: сила тяжести есть, а вес равен нулю!



Определить направление ускорения возможно, если определить, куда направлена равнодействующая сила

Обратите внимание, вес - сила, измеряется в Ньютонах. Как верно ответить на вопрос: "Сколько ты весишь"? Мы отвечаем 50 кг, называя не вес, а свою массу! В этом примере, наш вес равен силе тяжести, то есть примерно 500Н!

Перегрузка - отношение веса к силе тяжести

Сила Архимеда

Сила возникает в результате взаимодействия тела с жидкость (газом), при его погружении в жидкость (или газ). Эта сила выталкивает тело из воды (газа). Поэтому направлена вертикально вверх (выталкивает). Определяется по формуле:

В воздухе силой Архимеда пренебрегаем.

Если сила Архимеда равна силе тяжести, тело плавает. Если сила Архимеда больше, то оно поднимается на поверхность жидкости, если меньше - тонет.



Электрические силы

Существуют силы электрического происхождения. Возникают при наличии электрического заряда. Эти силы, такие как сила Кулона , сила Ампера , сила Лоренца , подробно рассмотрены в разделе Электричество .

Схематичное обозначение действующих на тело сил

Часто тело моделируют материальной точкой . Поэтому на схемах различные точки приложения переносят в одну точку - в центр, а тело изображают схематично кругом или прямоугольником.

Для того, чтобы верно обозначить силы, необходимо перечислить все тела, с которыми исследуемое тело взаимодействует. Определить, что происходит в результате взаимодействия с каждым: трение, деформация, притяжение или может быть отталкивание. Определить вид силы, верно обозначить направление. Внимание! Количество сил будет совпадать с числом тел, с которыми происходит взаимодействие.

Главное запомнить

1) Силы и их природа;
2) Направление сил;
3) Уметь обозначить действующие силы

Различают внешнее (сухое) и внутреннее (вязкое) трение. Внешнее трение возникает между соприкасающимися твердыми поверхностями, внутреннее - между слоями жидкости или газа при их относительном движении. Существует три вида внешнего трения: трение покоя, трение скольжения и трение качения.

Трение качения определяется по формуле

Сила сопротивления возникает при движении тела в жидкости или в газе. Величина силы сопротивления зависит от размеров и формы тела, скорости его движения и свойств жидкости или газа. При небольших скоростях движения сила сопротивления пропорциональна скорости тела

При больших скоростях пропорциональна квадрату скорости

Рассмотрим взаимное притяжение предмета и Земли. Между ними, согласно закону гравитации возникает сила

А сейчас сравним закон гравитации и силу тяжести

Величина ускорения свободного падения зависит от массы Земли и ее радиуса! Таким образом, можно высчитать, с каким ускорением будут падать предметы на Луне или на любой другой планете, используя массу и радиус той планеты.

Расстояние от центра Земли до полюсов меньше, чем до экватора. Поэтому и ускорение свободного падения на экваторе немного меньше, чем на полюсах. Вместе с тем, следует отметить, что основной причиной зависимости ускорения свободного падения от широты местности, является факт вращения Земли вокруг своей оси.

При удалении от поверхности Земли сила земного тяготения и ускорения свободного падения изменяются обратно пропорционально квадрату расстояния до центра Земли.


Чем большей деформации подвергается тело, тем значительней в нем возникает сила упругости. Это значит, что деформация и сила упругости взаимосвязаны, и по изменению одной величины можно судить об изменении другой. Так, зная деформацию тела, можно вычислить возникающую в нем силу упругости. Или, зная силу упругости, определить степень деформации тела.

Если к пружине подвешивать разное количество гирек одинаковой массы, то чем больше их будет подвешено, тем сильнее пружина растянется, то есть деформируется. Чем больше растянута пружина, тем большая в ней возникает силы упругости. Причем опыт показывает, что каждая следующая подвешенная гирька увеличивает длину пружины на одну и туже величину.

Так, например, если исходная длина пружины была 5 см, а подвешивание на ней одной гирьки увеличило ее на 1 см (т. е. пружина стала длиной 6 см), то подвешивание двух гирек увеличит ее на 2 см (общая длина составит 7 см), а трех - на 3 см (длина пружины будет 8 см).

Еще до опыта известно, что вес и возникающая под его действием сила упругости находятся друг с другом в прямопропорциональной зависимости. Кратное увеличение веса во столько же раз увеличит силу упругости. Опыт же показывает, что деформация точно также зависит от веса: кратное увеличение веса во столько же раз увеличивает изменения в длине. Это значит, что, исключив вес, можно установить прямопропорциональную зависимость между силой упругости и деформацией.

Если обозначить удлинение пружины в результате ее растяжения как x или как ∆l (l 1 – l 0 , где l 0 - начальная длина, l 1 - длина растянутой пружины), то зависимость силы упругости от растяжения можно выразить такой формулой:

F упр = kx или F упр = k∆l, (∆l = l 1 – l 0 = x)

В формуле используется коэффициент k . Он показывает, в какой именно зависимости находятся сила упругости и удлинение. Ведь удлинение на каждый сантиметр может увеличивать силу упругости одной пружины на 0,5 Н, второй на 1 Н, а третьей на 2 Н. Для первой пружины формула будет выглядеть как F упр = 0,5x, для второй - F упр = x, для третьей - F упр = 2x.

Коэффициент k называют жесткостью пружины. Чем жестче пружина, тем труднее ее растянуть, и тем большее значение будет иметь k. А чем больше k, тем больше будет сила упругости (F упр) при равных удлинения (x) разных пружин.

Жесткость зависит от материала, из которого изготовлена пружина, ее формы и размеров.

Единицей измерения жесткости является Н/м (ньютон на метр). Жесткость показывает, сколько ньютонов (сколько сил) надо приложить к пружине, чтобы растянуть ее на 1 м. Или насколько метров растянется пружина, если приложить для ее растяжения силу в 1 Н. Например, к пружине приложили силу в 1 Н, и она растянулась на 1 см (0,01 м). Это значит, что ее жесткость равна 1 Н / 0,01 м = 100 Н/м.

Также, если обратить внимание на единицы измерения, то станет понятно, почему жесткость измеряется в Н/м. Сила упругости, как и любая сила, измеряется в ньютонах, а расстояние - в метрах. Чтобы уровнять по единицам измерения левую и правую части уравнения F упр = kx, надо в правой части сократить метры (то есть поделить на них) и добавить ньютоны (то есть умножить на них).

Соотношение между силой упругости и деформацией упругого тела, описываемое формулой F упр = kx, открыл английский ученый Роберт Гук в 1660 году, поэтому это соотношение носит его имя и называется законом Гука .

Упругой деформацией является такая, когда после прекращения действия сил, тело возвращается в свое исходное состояние. Бывают тела, которые почти нельзя подвергнуть упругой деформации, а у других она может быть достаточно большой. Например, поставив тяжелый предмет на кусок мягкой глины, вы измените его форму, и этот кусок сам уже не вернется в исходное состояние. Однако если вы растяните резиновый жгут, то после того, как отпустите его, он вернет свои исходные размеры. Следует помнить, что закон Гука применим только для упругих деформаций.

Формула F упр = kx дает возможность по известным двум величинам вычислять третью. Так, зная приложенную силу и удлинение, можно узнать жесткость тела. Зная, жесткость и удлинение, найти силу упругости. А зная силу упругости и жесткость, вычислить изменение длины.