История открытия электромагнитной индукции. Фарадей. открытие электромагнитной индукции

История открытия электромагнитной индукции. Фарадей. открытие электромагнитной индукции
История открытия электромагнитной индукции. Фарадей. открытие электромагнитной индукции

История открытия электромагнитной индукции. Открытия Ганса Кристиана Эрстеда и Андре Мари Ампера показали, что электричество обладает магнитной силой. Влияние магнитных явлений на электрические было открыто Майклом Фарадеем. Ганс Кристиан Эрстед Андре Мари Ампер


Майкл Фараде́й () «Превратить магнетизм в электричество»- записал он в своём дневнике в 1822 году. Английский физик, основоположник учения об электромагнитном поле, иностранный почетный член Петербургской Академии Наук (1830).




Описание опытов Майкла Фарадея На деревянный брусок намотаны две медные проволоки. Одна из проволок была соединена с гальванометром, другая – с сильной батареей. При замыкании цепи наблюдалось внезапное, но чрезвычайно слабое действие на гальванометре, и то же самое действие замечалось при прекращении тока. При непрерывном же прохождении тока через одну из спиралей не удалось обнаружить отклонения стрелки гальванометра


Описание опытов Майкла Фарадея Другой опыт заключался в регистрации всплесков тока на концах катушки, внутрь которой вставлялся постоянный магнит. Такие всплески Фарадей назвал "волнами электричества"






ЭДС индукции ЭДС индукции, вызывающая всплески тока ("волны электричества") зависит не от величины магнитного потока, а от скорости его изменения.
















1. Определить направление линий индукции внешнего поля В (выходят из N и входят в S). 2.Определить, увеличивается или уменьшается магнитный поток через контур (если магнит вдвигается в кольцо, то Ф>0, если выдвигается, то Ф 0, если выдвигается, то Ф 0, если выдвигается, то Ф 0, если выдвигается, то Ф 0, если выдвигается, то Ф
3. Определить направление линий индукции магнитного поля В, созданного индукционным током (если Ф>0, то линии В и В направлены в противоположные стороны; если Ф 0, то линии В и В направлены в противоположные стороны; если Ф 0, то линии В и В направлены в противоположные стороны; если Ф 0, то линии В и В направлены в противоположные стороны; если Ф 0, то линии В и В направлены в противоположные стороны; если Ф


Вопросы Сформулируйте закон электромагнитной индукции. Кто является основоположником этого закона? Что такое индукционный ток и как определить его направление? От чего зависит величина ЭДС индукции? Принцип действия каких электрических аппаратов основан на законе электромагнитной индукции?


В 1821 г. Майкл Фарадей записал в своем дневнике: «Превратить магнетизм в электричество». Через 10 лет эта задача была им решена.
Открытие Фарадея
Не случайно первый и самый важный шаг в открытии новых свойств электромагнитных взаимодействий был сделан основоположником представлений об электромагнитном поле - Фарадеем. Фарадей был уверен в единой природе электрических и магнитных явлений. Вскоре после открытия Эрстеда он писал: «...представляется весьма необычным, чтобы, с одной стороны, всякий электрический ток сопровождался магнитным действием соответствующей интенсивности, направленным под прямым углом к току, и чтобы в то же время в хороших проводниках электричества, помещенных в сферу этого действия, совсем не индуцировался ток, не возникало какое-либо ощутимое действие, эквивалентное по силе такому току». Упорный труд в течение десяти лет и вера в успех привели Фарадея к открытию, которое впоследствии легло в основу устройства генераторов всех электростанций мира, превращающих механическую энергию в энергию электрического тока . (Источники, работающие на других принципах: гальва-нические элементы, аккумуляторы, термо- и фотоэлементы - дают ничтожную долю вырабатываемой электрической энер-гии.)
Долгое время взаимосвязь электрических и магнитных явлений обнаружить не удавалось. Трудно было додуматься до главного: только меняющееся во времени магнитное поле может возбудить электрический ток в неподвижной катушке или же сама катушка должна двигаться в магнитном поле.
Открытие электромагнитной индукции , как назвал Фарадей это явление, было сделано 29 августа" 1831 г. Редкий случай, когда столь точно известна дата нового замечательного открытия. Вот краткое описание первого опыта, данное самим Фарадеем.
«На широкую деревянную катушку была намотана медная проволока длиной в 203 фута, и между витками ее намотана проволока такой же длины, но изолированная от первой хлоп-чатобумажной нитью. Одна из этих спиралей была соединена с гальванометром, а другая - с сильной батареей, состоящей из 100 пар пластин... При замыкании цепи удалось заметить внезапное, но чрезвычайно слабое действие на гальванометр, и то же самое замечалось при прекращении тока. При непрерывном же прохождении тока через одну из спиралей не удавалось отметить ни действия на гальванометр, ни вообще какого-либо индукционного действия на другую спираль, несмо- Рис. 5.1
тря на то что нагревание всей спирали, соединенной с батареей, и яркость искры, проскакивающей между углями, свидетельствовали о мощности батареи».
Итак, первоначально была открыта индукция в неподвижных друг относительно друга проводниках при замыкании и размыкании цепи. Затем, ясно понимая, что сближение или удаление проводников с током должно приводить к тому же результату, что и замыкание и размыкание цепи, Фарадей с помощью опытов доказал, что ток возникает при перемещении катушек относительно друг друга (рис. 5.1). Знакомый с трудами Ампера, Фарадей понимал, что магнит - это совокупность маленьких токов, циркулирующих в молекулах. 17 октября, как зарегистрировано в его лабораторном журнале, был обнаружен индукционный ток в катушке во время вдвигания (или выдвигания) магнита (рис. 5.2). В течение одного месяца Фарадей опытным путем открыл все существен- ные особенности явления электромагнитной индукции. Оста-валось только придать закону строгую количественную форму и полностью вскрыть физическую природу явления.
Уже сам Фарадей уловил то общее, от чего зависит появление индукционного тока в опытах, которые внешне выглядят по-разному.
В замкнутом проводящем контуре возникает ток при изменении числа линий магнитной индукции, пронизывающих поверхность, ограниченную этим контуром. И чем быстрее меняется число линий магнитной индукции, тем больше возникающий ток. При этом причина изменения числа линий магнитной индукции совершенно безразлична. Это может быть и изменение числа линий магнитной индукции, прони-зывающих неподвижный проводник вследствие изменения силы тока в соседней катушке, и изменение числа линий вследствие движения контура в неоднородном магнитном поле, густота линий которого меняется в пространстве (рис. 5.3).
Фарадей не только открыл явление, но и первым сконструировал несовершенную пока еще модель генератора электрического тока, превращающего механическую энергию вращения в ток. Это был массивный медный диск, вращающийся между полюсами сильного магнита (рис. 5.4). Присоединив ось и край диска к гальванометру, Фарадей обнаружил откло-
В
\

\
\
\
\
\
\
\L

S нение стрелки. Ток был, правда, слаб, но найденный принцип позволил впоследствии построить мощные генераторы. Без них электричество и по сей день было бы мало кому доступной роскошью.
В проводящем замкнутом контуре возникает электрический ток, если контур находится в переменном магнитном поле или движется в постоянном во времени поле так, что число линий магнитной индукции, пронизывающих контур, меняется. Это явление называется электромагнитной индукцией.

Примером может служить вопрос. В этом контексте мы можем говорить о табу. Есть определенные области, которые будут табу для большинства, что не означает, что не будет ни одного, третьего, третьего ученого, который справится с этим явлением с любопытством человека.

Эти социальные условия делают большинство людей неинтересными в этом. Р: И это только вопрос. Пример примерки также показывает страх не дискредитировать. Д-р Марек Спира: Сегодня мы стремимся свергнуть все табу. С одной стороны, это знание истины, а с другой - уважение к определенным ценностям, чье свержение только ведет к разрушению общественного порядка. Любопытство человека настолько велико, что оно превосходит все границы. По своей природе человеку не нравится табу. И в этом смысле стремление к истине не знает границ, которые существуют, конечно, но они постоянно движутся.

Новый период в развитии физической науки начинается с гениального открытия Фарадеем электромагнитной индукции. Именно в этом открытии ярко проявилась способность науки обогащать технику новыми идеями. Уже сам Фарадей предвидел на основе своего открытия существование электромагнитных волн . 12 марта 1832 г. он запечатал конверт с надписью "Новые воззрения, подлежащие в настоящее время хранению в запечатанном конверте в архивах Королевского общества". Этот конверт был вскрыт в 1938 г. Оказалось, что Фарадей вполне ясно представлял, что индукционные действия распространяются с конечной скоростью волновым способом. "Я считаю возможным применить теорию колебаний к распространению электрической индукции",- писал Фарадей. При этом он указывал, что "на распространение магнитного воздействия требуется время, т. е. при воздействии магнита на другой отдаленный магнит или кусок железа влияющая причина (которую я позволю себе назвать магнетизмом) распространяется от магнитных тел постепенно и для своего распространения требует определенного времени, которое, очевидно, окажется весьма незначительным. Я полагаю также, что электрическая индукция распространяется точно таким же образом. Я полагаю, что распространение магнитных сил от магнитного полюса похоже на колебание взволнованной водной поверхности или же на звуковые колебания частиц воздуха".

Здесь возникает вопрос, узнаем ли мы когда-нибудь полную правду. Зная человеческую природу можно сказать, что, хотя это невозможно, мы всегда будем стремиться к этому. Однако есть опасность, что мы будем игнорировать эту тайну. Находясь на определенном этапе знания, мы можем заключить, что мы уже все знаем. Между тем, идет катастрофа, и вопрос в том, как мы можем ее отпустить? Возможно, это было из-за пренебрежения силами природы, силами природы. Примером может быть изобретатель компьютера, который в прошлом столетии считал, что приобретение знаний в компьютере будет неограниченным.

Фарадей понимал всю важность своей идеи и, не имея возможности проверить ее экспериментально, решил с помощью этого конверта "закрепить открытие за собой и, таким образом, иметь право, в случае экспериментального подтверждения, объявить эту дату датой своего открытия". Итак, 12 марта 1832 г. человечество впервые пришло к идее существования электромагнитных волн. С этой даты начинается история открытия радио.

Спустя годы после этого открытия, имея сегодня ноутбуки, это было заблуждением. Насколько масштабы нашего невежества увеличились по мере увеличения количества вопросов. Мы, физики, уклоняемся от земли. Предположим, мы хотим лететь в галактику далеко от Земли на несколько световых лет. Поскольку мы не можем построить космический корабль, который движется со скоростью выше скорости света, для достижения этой галактики недостаточно одного поколения космонавтов. Хотя можно представить себе космическое путешествие многих поколений космонавтов, но это возможно только в научной фантастике.

Но открытие Фарадея имело важное значение не только в истории техники. Оно оказало огромное влияние и на развитие научного миропонимания. С этого открытия в физику входит новый объект - физическое поле. Таким образом, открытие Фарадея принадлежит к тем фундаментальным научным открытиям, которые оставляют заметный след во всей истории человеческой культуры.

Именно эти константы, известные нам сегодня, определяют пределы познания. Если мы рассмотрим Большой взрыв, мы должны помнить, что наши знания до сих пор не доходят до того, что плотность материи несравнима с той, с которой мы имеем дело сегодня и которую мы не можем воспроизвести в наших условиях.

Мы не знаем эту «взрывную» физику, поэтому мы не знаем этих физических констант, если бы они были. Н.: Мы также не уверены, что сегодняшняя физика является конечной. У нас был Ньютон, который позже был проверен Эйнштейном, поэтому мы можем заключить, что Эйнштейн будет проверен кем-то другим.

Сын лондонского кузнеца переплетчик родился в Лондоне 22 сентября 1791 г. Гениальный самоучка не имел возможности даже закончить начальную школу и проложил путь в науку сам. Во время учения переплетному делу он читал книги, в особенности по химии, сам проделывал химические опыты. Слушая публичные лекции знаменитого химика Дэви, он окончательно убедился в том, что его призвание - наука, и обратился к нему с просьбой принять на работу в Королевский институт. С 1813 г., когда Фарадей был принят в институт лаборантом, и до самой смерти (25 августа 1867 г.) он жил наукой. Уже в 1821 г., когда Фарадей получил электромагнитное вращение, он поставил своей целью "превратить магнетизм в электричество". Десять лет поисков и напряженного труда увенчались открытием 29 августа 1871 г. электромагнитной индукции.

На этой основе была создана специальная теория относительности, уже неоднократно подтвержденная экспериментально. Однако, если одна из этих парадигм терпит неудачу, у нас будет новая физика. Если мы говорим, что мы знаем вселенную, природу, что мы знаем, что это было раньше, мы говорим это, потому что указанные физические константы не меняют своих значений с течением времени. Эксперименты, которые пытаются подорвать эти твердые вещества - и как и как они проводятся - не убедительны.

На самом деле мы можем сказать, что из определенной точки мы знаем, что физические законы, регулирующие Вселенную, уже не изменились - эти константы все те же. Есть ли секреты, с которыми мы не хотим встречаться? Кант говорил о двух типах метафизики - метафизике как о науке, которая не существует, а метафизике, как о естественной тенденции, которая заставляет нас нарушать табу.

"Двести три фута медной проволоки в одном куске были намотаны на большой деревянный барабан; другие двести три фута такой же проволоки были изолированы в виде спирали между витками первой обмотки, причем металлический контакт был устранен посредством шнурка. Одна из этих спиралей была соединена с гальванометром, а другая - с хорошо заряженной батареей из ста пар пластин в четыре квадратных дюйма с двойными медными пластинами. При замыкании контакта наблюдалось временное, но очень слабое действие на гальванометр, и подобное же слабое действие имело место при размыкании контакта с батареей". Так описал Фарадей свои первый опыт по индукции токов. Он назвал этот вид индукции вольта-электрической индукцией. Далее он описывает свой основной опыт с железным кольцом - прототипом современного трансформатора.

Границы существуют, но человеческий разум имеет естественную потребность задавать вопросы, на которые нельзя ответить эмпирически. Это не роскошь, а обязанность человека найти ее. Когда-то было убеждение, что слишком много любознательности оставляет нас от Бога. Мы сами создали табу - Бог не может быть известен, потому что мы потеряем веру. Аутентичные люди, которых уважают, прежде всего, доверяют, и их смирение было обусловлено культурным контекстом. Образованный человек начал уходить от Бога, утверждая, что он не поверит в это «суеверие».

Было много недоразумений, потому что иногда мы не ценили поиск истины. Христианство никогда официально не декларировало такую ​​формулу, потому что вера нуждается в помощи разума, чтобы знать истину и даже спорить с Господом Богом. Можем ли мы действительно познакомиться с ним? Это еще одна проблема, но она не освобождает нас от обязанности постоянного поиска, потому что у нас есть причина. Церковь сегодня повторяет, что между верой и разумом нет противоречия. Даже если он победит некоторые догмы?

"Из круглого брускового мягкого железа было сварено кольцо; толщина металла была равна семи восьмым дюйма, а наружный диаметр кольца - шести дюймам. На одну часть этого кольца были намотаны три спирали содержащие каждая около двадцати четырех футов медной проволоки, толщиной в одну двадцатую дюйма. Спирали были изолированы от железа и друг от друга..., занимая приблизительно девять дюймов по длине кольца Ими можно было пользоваться по отдельности и в соединении; эта группа обозначена буквой А. На другую часть кольца было намотано таким же способом около шестидесяти футов такой же медной проволоки в двух кусках, которая образовывала спираль В, имевшую одинаковое направление со спиралями А, но отделенную от них на каждом конце на протяжении приблизительно полудюйма голым железом.

С.: Нам не нужно бояться, разум не может отменить любую догму, и если это произойдет, это означает, что нам не нужно иметь дело с догмой, но с человеческой формулой без покрытия. Причина состоит в том, чтобы уничтожить ложь, но истина никогда не терпит неудачу. Мы знаем это из истории Церкви, даже если это было очень сложно, Церковь смогла очистить себя от лжи, и мы этим гордимся.

Иллюстрацией может служить пример взаимоотношений экипажа двух космических кораблей, после возвращения экипажа одного из них было сказано: Бога нет, а другого - настолько прекрасного, что он может быть создан только Богом. Так что, если есть табу вообще, то это временное существо из-за культурных и социальных условий, которое в основном связано с опасениями иметь дело с чем-то рискованным с точки зрения потери научной позиции. Это волшебное слово - организация - имеет свое происхождение, остается вопрос - что?

Спираль В соединялась медными проводами с гальванометром, помещенном на расстоянии трех футов от железа. Отдельные спирали соединялись концы с концами так, что образовывали общую спираль, концы которой соединялись с батареей из десяти пар пластин в четыре квадратных дюйма. Гальванометр реагировал немедленно, и притом значительно сильнее чем это наблюдалось, как описано выше, при пользовании в десять раз более мощной спиралью, но без железа; однако, несмотря на сохранение контакта, действие прекращалось. При размыкании контакта с батареей стрелка снова сильно отклонялась, но в направлении, противоположном тому, которое индуцировалось в первом случае".

Поэтому Бог знает вещи такими, какие они есть, и мы такие, какие они есть. Р.: Вы можете не согласиться со мной, но что-то, что невозможно проверить экспериментально, будет всегда труднее принять. Особенно в области физики. Н.: Тот же Кант говорит: у меня ограниченные знания, чтобы освободить место для веры. Там, где есть границы знания, начинается моя вера.

Н.: Причины для этого ученого заключаются в следующем: все доказательства существования Бога были ложными, так что Бога нет. Тем временем только методология проверяется следующим образом: все доказательства существования Бога были ложными, но никаких заключений о его существовании или его существовании не может быть сделано. И это действительно выходит за рамки компетенции, но здесь также есть огромная проблема - правильная методология исследования: правильная или неправильная, это касается каждой области, будь то физика, астрономия, философия или теология.

Фарадей исследовал далее непосредственным опытом влияние железа, внося внутрь полой катушки железный стержень, в этом случае "индуцированный ток оказывал на гальванометр очень сильное действие". "Подобное действие было затем получено при помощи обыкновенных магнитов ". Фарадей назвал это действие магнитоэлектрической индукцией, полагая, что природа вольта-электрической и магнитоэлектрической индукции одинакова.

Почему он используется для обнаружения секретов - естественной необходимости углублять знания, прогресс или удовлетворять субъективные потребности отдельных исследователей? Это можно увидеть на примере неингибированных так называемых. основные исследования. Их природа заключается в том, чтобы открыть секреты природы, независимо от часто используемого стимула для их непосредственного использования. Когда Фарадей обнаружил явление электромагнитной индукции, его спросили, каково это было бы иметь человечество?

Он уклончиво сказал, что вы наверняка заплатите налоги и не обратитесь к научной стороне открытия. Его субъективная потребность заключалась в желании узнать и удовлетворении, которое пришло от него. Мне кажется, что использование полезности исследования не оправдано.

Все описанные опыты составляют содержание первого и второго разделов классического труда Фарадея "Экспериментальные исследования по электричеству", начатого 24 ноября 1831 г. В третьем разделе этой серии "О новом электрическом состоянии материи" Фарадей впервые пытается описать новые свойства тел, проявляемые в электромагнитной индукции. Он называет это обнаруженное им свойство "электротоническим состоянием". Это первый зародыш идеи поля, сформировавшейся позднее у Фарадея и впервые точно сформулированной Максвеллом. Четвертый раздел первой серии посвящен объяснению явления Араго. Фарадей правильно причисляет это явление к индукционным и пытается с помощью этого явления "получить новый источник электричества". При движении медного диска между полюсами магнита он получил ток в гальванометре при помощи скользящих контактов. Это была первая динамомашина. Фарадей резюмирует результаты своих опытов следующими словами: "Этим было показано, таким образом, что можно создать постоянный ток электричества при помощи обыкновенного магнита". Из своих опытов по индукции в движущихся проводниках Фарадей вывел зависимость между полюсностью магнита, движущимся проводником и направлением индуцированного тока, т. е. "закон, управляющий получением электричества посредством магнитоэлектрической индукции". В результате своих исследований Фарадей установил, что "способность индуцировать токи проявляется по окружности вокруг магнитной равнодействующей или силовой оси точно так, как расположенный по окружности магнетизм возникает вокруг электрического тока и им обнаруживается" * .

Пусть университет в фундаментальных исследованиях продолжит задавать вопросы о том, почему и открывать новые законы или правила, а колледжи технического использования должны использовать их, чтобы сделать жизнь проще, удобнее, интереснее, привлекательно и т.д. неправильная передача этого подразделения не принесет никакой пользы. С.: Поиск истины бескорыстен. Ребенок поднимает тысячи вопросов, и родители отвечают на них. Когда Колумб отправился в путешествие по всему миру, его спросили, почему он едет туда.

Ибо весь мир был сотворен. Но ему нужно было знать, текла для себя. Он убивает нас утверждением, что все должно быть полезно. Ибо в этом случае истина трактуется инструментально, зная, что тайна также играет важную роль. Вопрос о смысле человеческой жизни становится в нашей культуре совершенно бесполезным. Но, с другой стороны, если бы мы не задавали этот вопрос, наша жизнь была бы бессмысленной. Во-первых, есть самоотверженность, и тогда может оказаться, что истина по-разному используется во благо личной, социальной, экономической, политической жизни.

* (М. Фарадей, Экспериментальные исследования по электричеству, т. I, Изд. АН СССР, 1947, стр. 57. )

Другими словами, вокруг переменного магнитного потока возникает вихревое электрическое поле, подобно тому как вокруг электрического тока возникает вихревое магнитное поле. Этот фундаментальный факт был обобщен Максвеллом в виде его двух уравнений электромагнитного поля .

Для каждого открытия вам нужно быть хорошо подготовленным. Каждое открытие, даже так называемая медиальная катастрофа, покрывается огромными знаниями и опытом исследователя. Только огромные знания, воображение и выход за рамки традиционных рамок научных исследований позволяют увидеть нечто новое, новое, неизвестное, а затем называемое открытием. Коперника осудили не потому, что он ему не нравился, например, он был из Торунь, а потому, что он не мог понять, что Библию нельзя читать буквально. Часто исследователь сталкивается с вульгарным подходом к обучению, знаниям и непониманию.

Изучению явлений электромагнитной индукции, в особенности индукционного действия магнитного поля Земли, посвящена также вторая серия "Исследований", начатая 12 января 1832 г. Третью серию, начатую 10 января 1833 г., Фарадей посвящает доказательству тождества различных видов электричества: электростатического, гальванического, животного, магнитоэлектрического (т. е. получаемого посредством электромагнитной индукции). Фарадей приходит к выводу, что электричество, получаемое различными способами, качественно одинаково, разница в действиях только количественная. Этим был нанесен последний удар концепции различных "флюидов" смоляного и стеклянного электричества, гальванизма, животного электричества. Электричество оказалось единой, но полярной сущностью.

Иногда первооткрыватель опережает свое время, только новое поколение принимает его открытие. У нас также сегодня есть естественная тенденция комфортно укладывать мир в разные стороны, так что нам не нужно думать, просто чтобы потреблять. Примером может служить Джеймс Клерк Максвелл, чье знаменитое уравнение - наша цивилизация; Без них было бы трудно представить сегодняшние успехи и развитие. Однако понимание Максвелла механизма электромагнитного распространения не вписывается в сегодняшнюю интерпретацию этого явления.

Кроме того, Оливье Хевисайде, еще один ученый и математик, сделал его математические и математические формулы очень полезными. Это пример сущности и рода преемственности науки: вклад в универсальное знание имеет много ученых, даже «самых маленьких». Разве это не утешительно в эпоху очередного унижения академического мира? Каковы секреты современной науки , с которыми сталкиваются самые большие исследовательские возможности?

Весьма важна пятая серия "Исследований" Фарадея, начатая 18 июня 1833 г. Здесь Фарадей начинает свои исследования электролиза, приведшие его к установлению знаменитых законов, носящих его имя. Исследования эти были продолжены в седьмой серии, начатой 9 января 1834 г. В этой последней серии Фарадей предлагает новую терминологию: полюса, подводящие ток в электролит, он предлагает называть электродами, положительный электрод называть анодом, а отрицательный - катодом, частицы отлагаемого вещества, идущие к аноду он называет анионами, а частицы, идущие к катоду,- катионами . Далее, ему принадлежат термины электролит для разлагаемых веществ, ионы и электрохимические эквиваленты. Все эти термины прочно удержались в науке. Фарадей делает правильный вывод из найденных им законов, что можно говорить о каком-то абсолютном количестве электричества, связанном с атомами обычной материи. "Хотя мы ничего не знаем о том, что такое атом,- пишет Фарадей,- но мы невольно представляем себе какую-то малую частичку, которая является нашему уму, когда мы о ней думаем; правда, в таком же или в еще большем неведении мы находимся относительно электричества, мы даже не в состоянии сказать, представляет ли оно собою особую материю или материи, или же просто движение обыкновенного вещества, или еще вид какой-то силы или агента; тем не менее имеется огромное количество фактов, заставляющих нас думать, что атомы материи каким-то образом одарены электрическими силами или связаны с ними и им они обязаны своими наиболее замечательными качествами, а в том числе своим химическим сродством друг к другу" * .

Ученые все еще задаются вопросом, почему заряд протона положителен, а электрон отрицателен? Какие свойства имеет антиматерия? Как ведет себя материал, известный при очень высоких температурах? Эти вопросы действительно имеют значение. Мы говорим о температурах, сравнимых с внутренней температурой Солнца. Это огромная проблема для физиков, очень важная в контексте поиска новых источников энергии.

Чтобы проиллюстрировать важность этой проблемы для человечества, достаточно привести одну из оценок. В ситуации такого большого прогресса науки, использования природы в служении человечеству проблема остается человеком, который все больше и больше путается. Изменения начинают размываться. Неизведанное развитие науки не оказывает отрицательного влияния на интеллектуальное развитие обществ, но наоборот - негативные явления, такие как вторичная неграмотность, размножаются.

* (М. Фарадей, Экспериментальные исследования по электричеству, т. I, Изд. АН СССР, 1947, стр. 335. )

Таким образом, Фарадей отчетливо высказал идею "электрификации" материи, атомного строения электричества, причем атом электричества, или, как выражается Фарадей, "абсолютное количество электричества", оказывается "столь же определенным по своему действию, как любое из тех количеств, которые, оставаясь связанными с частицами материи, сообщают им их химическое сродство". Элементарный электрический заряд, как показало дальнейшее развитие физики, действительно может быть определен из законов Фарадея.

Весьма важное значение имела девятая серия "Исследований" Фарадея. В этой серии, начатой 18 декабря 1834 г., шла речь о явлениях самоиндукции, об экстратоках замыкания и размыкания. Фарадей указывает при описании этих явлений, что хотя им присущи черты инерции, однако от механической инерции явление самоиндукции отличает тот факт, что они зависят от формы проводника. Фарадей отмечает, что "экстраток тождествен с... индуцированным током" * . В результате у Фарадея сложилось представление о весьма широком значении процесса индукции. В одиннадцатой серии своих исследований, начатой 30 ноября 1837 г., он утверждает: "Индукция играет самую общую роль во всех электрических явлениях, участвуя, по-видимому, в каждом из них, и носит в действительности черты первейшего и существенного начала" ** . В частности, по мнению Фарадея, всякий процесс зарядки есть процесс индукции, смещения противоположных зарядов: "вещества не могут быть заряжены абсолютно, а только относительно, по закону, тождественному с индукцией. Всякий заряд поддерживается индукцией. Все явления напряжения включают начало индукций" *** . Смысл этих утверждений Фарадея тот, что всякое электрическое поле ("явление напряжения" - по терминологии Фарадея) обязательно сопровождается индукционным процессом в среде ("смещением" - по позднейшей терминологии Максвелла). Этот процесс определяется свойствами среды, ее "индуктивной способностью", по терминологии Фарадея, или "диэлектрической проницаемостью", по современной терминологии. Фарадей опытом со сферическим конденсатором определил диэлектрическую проницаемость ряда веществ по отношению к воздуху. Эти эксперименты укрепили Фарадея в мысли о существенной роли среды в электромагнитных процессах.

* (М. Фарадей, Экспериментальные исследования по электричеству, т. I, Изд. АН СССР, 1947, стр. 445. )

** (М. Фарадей, Экспериментальные исследования по электричеству, т. I, Изд. АН СССР, 1947, стр. 478. )

*** (М. Фарадей, Экспериментальные исследования по электричеству, т. I, Изд. АН СССР, 1947, стр. 487. )

Закон электромагнитной индукции был существенно развит русским физиком Петербургской Академии Эмилием Христиановичем Ленцем (1804-1865). 29 ноября 1833 г. Ленц доложил Академии наук свое исследование "Об определении направления гальванических токов, возбуждаемых электродинамической индукцией". Ленц показал, что магнитоэлектрическая индукция Фарадея теснейшим образом связана с электромагнитными силами Ампера. "Положение, посредством которого магнитоэлектрическое явление сводится к электромагнитному, заключается в следующем: если металлический проводник движется поблизости от гальванического тока или магнита, то в нем возбуждается гальванический ток такого направления, что если бы данный проводник был неподвижным, то ток мог бы обусловить его перемещение в противоположную сторону; при этом предполагается, что покоящийся проводник может перемещаться только в направлении движения или в противоположном направлении" * .

* (Э. X. Ленц, Избранные труды, Изд. АН СССР, 1950, стр. 148-149. )

Этот принцип Ленца раскрывает энергетику индукционных процессов и сыграл важную роль в работах Гельмгольца по установлению закона сохранения энергии. Сам Ленц из своего правила вывел хорошо известный в электротехнике принцип обратимости электромагнитных машин: если вращать катушку между полюсами магнита, она генерирует ток; наоборот, если в нее послать ток, она будет вращаться. Электродвигатель можно обратить в генератор и наоборот. Изучая действие магнитоэлектрических машин, Ленц открывает в 1847 г. реакцию якоря.

В 1842-1843 гг. Ленц произвел классическое исследование "О законах выделения тепла гальваническим током" (доложено 2 декабря 1842 г., опубликовано в 1843 г.), начатое им задолго до аналогичных опытов Джоуля (сообщение Джоуля появилось в октябре 1841 г.) и продолженное им несмотря на публикацию Джоуля, "так как опыты последнего могут встретить некоторые обоснованные возражения, как это было уже показано нашим коллегой г-ном акад. Гессом" * . Ленц измеряет величину тока с помощью тангенс-буссоли - прибора, изобретенного гельсингфорским профессором Иоганном Нервандером (1805-1848), и в первой части своего сообщения исследует этот прибор. Во второй части "Выделение тепла в проволоках", доложенной 11 августа 1843 г., он приходит к своему знаменитому закону:

    "
  1. Нагревание проволоки гальваническим током пропорционально сопротивлению проволоки.
  2. Нагревание проволоки гальваническим током пропорционально квадрату служащего для нагревания тока" ** .

* (Э. X. Ленц, Избранные труды, Изд. АН СССР, 1950, стр. 361. )

** (Э. X. Ленц, Избранные труды, Изд. АН СССР, 1950, стр. 441. )

Закон Джоуля - Ленца сыграл важную роль в установлении закона сохранения энергии. Все развитие науки об электрических и магнитных явлениях подводило к идее единства сил природы, к идее сохранения этих "сил".

Почти одновременно с Фарадеем электромагнитную индукцию наблюдал американский физик Джозеф Генри (1797-1878). Генри изготовил большой электромагнит (1828), который, питаясь от гальванического элемента с малым сопротивлением, поддерживал груз в 2000 фунтов. Об этом электромагните упоминает Фарадей и указывает, что с его помощью можно при размыкании получить сильную искру.

Генри впервые (1832) наблюдал явление самоиндукции, и его приоритет отмечен наименованием единицы самоиндукции "генри".

В 1842 г. Генри установил колебательный характер разряда лейденской банки. Тонкая стеклянная игла, с помощью которой он исследовал это явление, намагничивалась с различной полярностью, тогда как направление разряда оставалось неизменным. "Разряд, какова бы ни была его природа,- заключает Генри,- не представляется (пользуясь теорией Франклина.- П. К.) единичным переносом невесомого флюида с одной обкладки на другую; обнаруженное явление заставляет нас допустить существование главного разряда в одном направлении, а затем несколько странных действий назад и вперед, каждое из которых является более слабым, чем предыдущее, продолжающееся до тех пор, пока не наступит равновесие".

Индукционные явления становятся ведущей темой в физических исследованиях. В 1845 г. немецкий физик Франц Нейман (1798-1895) дал математическое выражение закона индукции , обобщив исследования Фарадея и Ленца.

Электродвижущая сила индукции выражалась у Неймана в виде производной по времени от некоторой функции, индуцирующей ток, и взаимной конфигурации взаимодействующих токов. Эту функцию Нейман назвал электродинамическим потенциалом. Он нашел также выражение для коэффициента взаимной индукции. В своем сочинении "О сохранении силы" в 1847 г. Гельмгольц выводит неймановское выражение для закона электромагнитной индукции из энергетических соображений. В этом же сочинении Гельмгольц утверждает, что разряд конденсатора представляет собой "не... простое движение электричества в одном направлении, но... течение его то в одну, то в другую сторону между двух обкладок в виде колебаний, которые делаются все меньше и меньше, пока, наконец, вся живая сила не будет уничтожена суммою сопротивлений".

В 1853 г. Уильям Томсон (1824-1907) дал математическую теорию колебательного разряда конденсатора и установил зависимость периода колебаний от параметров колебательного контура (формула Томсона).

В 1858 г. П. Блазерна (1836-1918) снял экспериментально резонансную кривую электрических колебаний, изучая действие индуцирующего разрядкой контура, содержащего батарею конденсаторов и замыкающий проводники на побочный контур, с переменной длиной индуцируемого проводника. В том же 1858 г. Вильгельм Феддерсен (1832-1918) наблюдал искровой разряд лейденской банки во вращающемся зеркале, а в 1862 г. он сфотографировал изображение искрового разряда во вращающемся зеркале. Тем самым колебательный характер разряда был установлен с полной очевидностью. Вместе с тем экспериментально была проверена формула Томсона. Так шаг за шагом создавалось учение об электрических колебаниях , составляющее научный фундамент электротехники переменных токов и радиотехники.

ФАРАДЕЙ. ОТКРЫТИЕ ЭЛЕКТРОМАГНИТНОЙ ИНДУКЦИИ

Одержимый идеями о неразрывной связи и взаимодействии сил природы, Фарадей пытался доказать, что точно так же, как с помощью электричества Ампер мог создавать магниты, так же и с помощью магнитов можно создавать электричество.

Логика его была проста: механическая работа легко переходит в тепло; наоборот, тепло можно преобразовать в механическую работу (скажем, в паровой машине). Вообще, среди сил природы чаще всего случается следующее соотношение: если А рождает Б, то и Б рождает А.

Если с помощью электричества Ампер получал магниты, то, по-видимому, возможно «получить электричество из обычного магнетизма». Такую же задачу поставили перед собой Араго и Ампер в Париже, Колладон - в Женеве.

Фарадей ставит множество опытов, ведет педантичные записи. Каждому небольшому исследованию он посвящает параграф в лабораторных записях (изданы в Лондоне полностью в 1931 году под названием «Дневник Фарадея»). О работоспособности Фарадея говорит хотя бы тот факт, что последний параграф «Дневника» помечен номером 16041. Блестящее мастерство Фарадея-экспериментатора, одержимость, четкая философская позиция не могли не быте вознаграждены, но ожидать результата пришлось долгих одиннадцать лет.

Кроме интуитивной убежденности во всеобщей связи явлений, его, собственно, в поисках «электричества из магнетизма» ничто не поддерживало. К тому же он, как его учитель Дэви, больше полагался на свои опыты, чем на мысленные построения. Дэви учил его:

Хороший эксперимент имеет больше ценности, чем глубокомыслие такого гения, как Ньютон.

И тем не менее именно Фарадею суждены были великие открытия. Великий реалист, он стихийно рвал путы эмпирики, некогда навязанные ему Дэви, и в эти минуты его осеняло великое прозрение - он приобретал способность к глубочайшим обобщениям.

Первый проблеск удачи появился лишь 29 августа 1831 года. В этот день Фарадей испытывал в лаборатории несложное устройство: железное кольцо диаметром около шести дюймов, обмотанное двумя кусками изолированной проволоки. Когда Фарадей подключил к зажимам одной обмотки батарею, его ассистент, артиллерийский сержант Андерсен, увидел, как дернулась стрелка гальванометра, подсоединенного к другой обмотке.

Дернулась и успокоилась, хотя постоянный ток продолжал течь по первой обмотке. Фарадей тщательно просмотрел все детали этой простой установки - все было в порядке.

Но стрелка гальванометра упорно стояла на нуле. С досады Фарадей решил выключить ток, и тут случилось чудо - во время размыкания цепи стрелка гальванометра опять качнулась и опять застыла на нуле!

Фарадей был в недоумении: во-первых, почему стрелка ведет себя так странно? Во-вторых, имеют ли отношение замеченные им всплески к явлению, которое он искал?

Вот тут-то и открылись Фарадею во всей ясности великие идеи Ампера - связь между электрическим током и магнетизмом. Ведь первая обмотка, в которую он подавал ток, сразу становилась магнитом. Если рассматривать ее как магнит, то эксперимент 29 августа показал, что магнетизм как будто бы рождает электричество. Только две вещи оставались в этом случае странными: почему всплеск электричества при включении электромагнита стал быстро сходить на нет? И более того, почему всплеск появляется при выключении магнита?

На следующий день, 30 августа, - новая серия экспериментов. Эффект ясно выражен, но тем не менее абсолютно непонятен.

Фарадей чувствует, что открытие где-то рядом.

«Я теперь опять занимаюсь электромагнетизмом и думаю, что напал на удачную вещь, но не могу еще утверждать это. Очень может быть, что после всех моих трудов я в конце концов вытащу водоросли вместо рыбы».

К следующему утру, 24 сентября, Фарадей подготовил много различных устройств, в которых основными элементами были уже не обмотки с электрическим током, а постоянные магниты. И эффект тоже существовал! Стрелка отклонялась и сразу же устремлялась на место. Это легкое движение происходило при самых неожиданных манипуляциях с магнитом, иной раз, казалось, случайно.

Следующий эксперимент - 1 октября. Фарадей решает вернуться к самому началу - к двум обмоткам: одной с током, другой - подсоединенной к гальванометру. Различие с первым экспериментом - отсутствие стального кольца - сердечника. Всплеск почти незаметен. Результат тривиален. Ясно, что магнит без сердечника гораздо слабее магнита с сердечником. Поэтому и эффект выражен слабее.

Фарадей разочарован. Две недели он не подходит к приборам, размышляя о причинах неудачи.

Фарадей заранее знает, как это будет. Опыт удается блестяще.

«Я взял цилиндрический магнитный брусок (3/4 дюйма в диаметре и 8 1/4 дюйма длиной) и ввел один его конец внутрь спирали из медной проволоки (220 футов длиной), соединенной с гальванометром. Потом я быстрым движением втолкнул магнит внутрь спирали на всю его длину, и стрелка гальванометра испытала толчок. Затем я так же быстро вытащил магнит из спирали, и стрелка опять качнулась, но в противоположную сторону. Эти качания стрелки повторялись всякий раз, как магнит вталкивался или выталкивался».

Секрет - в движении магнита! Импульс электричества определяется не положением магнита, а движением!

Это значит, что «электрическая волна возникает только при движении магнита, а не в силу свойств, присущих ему в покое».

Эта идея необыкновенно плодотворна. Если движение магнита относительно проводника создает электричество, то, видимо, и движение проводника относительно магнита должно рождать электричество! Причем эта «электрическая волна» не исчезнет до тех пор, пока будет продолжаться взаимное перемещение проводника и магнита. Значит, есть возможность создать генератор электрического тока, действующий сколь угодно долго, лишь бы продолжалось взаимное движение проволоки и магнита!

28 октября Фарадей установил между полюсами подковообразного магнита вращающийся медный диск, с которого при помощи скользящих контактов (один на оси, другой - на периферии диска) можно было снимать электрическое напряжение. Это был первый электрический генератор, созданный руками человека.

После «электромагнитной эпопеи» Фарадей был вынужден прекратить на несколько лет свою научную работу - настолько была истощена его нервная система...

Опыты, аналогичные фарадеевским, как уже говорилось, проводились во Франции и в Швейцарии. Профессор Женевской академии Колладон был искушенным экспериментатором (он, например, произвел на Женевском озере точные измерения скорости звука в воде). Может быть, опасаясь сотрясения приборов, он, как и Фарадей, по возможности удалил гальванометр от остальной установки. Многие утверждали, что Колладон наблюдал те же мимолетные движения стрелки, что и Фарадей, но, ожидая более стабильного, продолжительного эффекта, не придал этим «случайным» всплескам должного значения...

Действительно, мнение большинства ученых того времени сводилось к тому, что обратный эффект «создания электричества из магнетизма» должен, по-видимому, иметь столь же стационарный характер, как и «прямой» эффект - «образование магнетизма» за счет электрического тока. Неожиданная «мимолетность» этого эффекта сбила с толку многих, в том числе Колладона, и эти многие поплатились за свою предубежденность.

Фарадея тоже поначалу смущала мимолетность эффекта, но он больше доверял фактам, чем теориям, и в конце концов пришел к закону электромагнитной индукции. Этот закон казался тогда физикам ущербным, уродливым, странным, лишенным внутренней логики.

Почему ток возбуждается только во время движения магнита или изменения тока в обмотке?

Этого не понимал никто. Даже сам Фарадей. Понял это через семнадцать лет двадцатишестилетний армейский хирург захолустного гарнизона в Потсдаме Герман Гельмгольц. В классической статье «О сохранении силы» он, формулируя свой закон сохранения энергии, впервые доказал, что электромагнитная индукция должна существовать именно в этом «уродливом» виде.

Независимо к этому пришел и старший друг Максвелла, Вильям Томсон. Он тоже получил электромагнитную индукцию Фарадея из закона Ампера при учете закона сохранения энергии.

Так «мимолетная» электромагнитная индукция приобрела права гражданства и была признана физиками.

Но она никак не укладывалась в понятия и аналогии статьи Максвелла «О фарадеевских силовых линиях». И это было серьезным недостатком статьи. Практически ее значение сводилось к иллюстрации того, что теории близко- и дальнодействия представляют различное математическое описание одних и тех же экспериментальных данных, что силовые линии Фарадея не противоречат здравому смыслу. И это все. Все, хотя это было уже очень много.

Из книги Максвелл автора Карцев Владимир Петрович

К ЭЛЕКТРОМАГНИТНОЙ ТЕОРИИ СВЕТА Статья «О физических силовых линиях» выходила по частям. И третья часть ее, как и обе предыдущие, содержала новые идеи чрезвычайной ценности.Максвелл писал: «Необходимо предположить, что вещество ячеек обладает эластичностью формы,

Из книги Вернер фон Сименс - биография автора Вейхер Зигфрид фон

Трансатлантический кабель. Кабельное судно “Фарадей" Очевидный успех индоевропейской линии как в техническом, так и в финансовом отношении должен был воодушевить ее создателей на дальнейшие начинания. Случай начать новое дело представился, и вдохновителем оказался

Из книги Великая Теорема Ферма автора Сингх Саймон

Приложение 10. Пример доказательства по индукции В математике важно иметь точные формулы, позволяющие вычислять сумму различных последовательностей чисел. В данном случае мы хотим вывести формулу, дающую сумму первых n натуральных чисел.Например, «сумма» всего лишь

Из книги Фарадей автора Радовский Моисей Израилевич

Из книги Роберт Вильямс Вуд. Современный чародей физической лаборатории автора Сибрук Вильям

Из книги Шелест гранаты автора Прищепенко Александр Борисович

ГЛАВА ОДИННАДЦАТАЯ Вуд растягивает свой отпускной год на три, стоит на том месте, где когда-то стоял Фарадей, и пересекает нашу планету вдоль и поперек Обыкновенный университетский профессор счастлив, если ему удается получить свободный год раз в семь лет. Но Вуд не

Из книги Курчатов автора Асташенков Петр Тимофеевич

Из книги Путешествие вокруг света автора Форстер Георг

Вот оно, открытие! Крепкий орешек Академика Иоффе и его сотрудников давно уже заинтересовало необычное поведение в электрическом поле кристаллов сегнетовой соли (двойная натрикалиевая соль виннокаменной кислоты). Исследовалась эта соль пока мало, и было только

Из книги Зодиак автора Грейсмит Роберт

Из книги 50 гениев, которые изменили мир автора Очкурова Оксана Юрьевна

1 ДЭВИД ФАРАДЕЙ И БЕТТИ ЛУ ДЖЕНСЕН Пятница, 20 декабря 1968 годаДэвид Фарадей неторопливо вел машину между пологих холмов Вальехо, не обращая особого внимания на мост «Золотые ворота», на яхты и глиссеры, мелькавшие в бухте Сан-Пабло, на четкие силуэты портовых кранов и

Из книги Неостывшая память [сборник] автора Друян Борис Григорьевич

Фарадей Майкл (род. в 1791 г. – ум. в 1867 г.) Выдающийся английский ученый, физик и химик, основоположник учения об электромагнитном поле, открывший электромагнитную индукцию – явление, которое легло в основу электротехники, а также законы электролиза, названные его

Из книги Фрэнсис Бэкон автора Субботин Александр Леонидович

Открытие В один из пасмурных осенних дней 1965 года в редакции художественной литературы Лениздата появился молодой человек с тощей канцелярской папкой в руке. Можно было со стопроцентной вероятностью догадаться, что в ней – стихи. Он был явно смущен и, не зная к кому

Из книги Танцующая в Аушвице автора Гласер Паул

Из книги Великие химики. В 2-х томах. Т. I. автора Манолов Калоян

Открытие Один из моих коллег родом из Австрии. Мы с ним дружим, и однажды вечером за разговором он замечает, что фамилия Гласер была весьма распространена в довоенной Вене. Мой отец как-то рассказывал, вспоминаю я, что наши далекие предки жили в немецкоговорящей части

Из книги Ницше. Для тех, кто хочет все успеть. Афоризмы, метафоры, цитаты автора Сирота Э. Л.

МАЙКЛ ФАРАДЕЙ (1791–1867) Воздух в переплетной мастерской был пропитан запахом столярного клея. Расположившись среди груды книг, рабочие весело переговаривались и усердно сшивали печатные листы. Майкл клеил толстый том Британской энциклопедии. Он мечтал прочитать ее

Из книги автора

Открытие юга Осенью 1881 года Ницше попал под обаяние творчества Жоржа Бизе – его «Кармен» в Генуе он слушал около двадцати раз! Жорж Бизе (1838–1875) – знаменитый французский композитор-романтистВесна 1882 года – новое путешествие: из Генуи на корабле в Мессину, о которой чуть

Вектор магнитной индукции \(~\vec B\) характеризует магнитное поле в каждой точке пространства. Введем еще одну величину, зависящую от значения вектора магнитной индукции не в одной точке, а во всех точках произвольно выбранной поверхности. Эту величину называют потоком вектора магнитной индукции, или магнитным потоком .

Выделим в магнитном поле настолько малый элемент поверхности площадью ΔS , чтобы магнитную индукцию во всех его точках можно было считать одинаковой. Пусть \(~\vec n\) - нормаль к элементу, образующая угол α с направлением вектора магнитной индукции (рис. 1).

Потоком вектора магнитной индукции через поверхность площадью ΔS называют величину, равную произведению модуля вектора магнитной индукции \(~\vec B\) на площадь ΔS и косинус угла α между векторами \(~\vec B\) и \(~\vec n\) (нормалью к поверхности):

\(~\Delta \Phi = B \cdot \Delta S \cdot \cos \alpha\) .

Произведение B ∙cos α = В n представляет собой проекцию вектора магнитной индукции на нормаль к элементу. Поэтому

\(~\Delta \Phi = B_n \cdot \Delta S\) .

Поток может быть как положительным, так и отрицательным в зависимости от значения угла α .

Если магнитное поле однородно, то поток через плоскую поверхность площадью S равен:

\(~\Phi = B \cdot S \cdot \cos \alpha\) .

Поток магнитной индукции наглядно может быть истолкован как величина, пропорциональная числу линий вектора \(~\vec B\) , пронизывающих данную площадку поверхности.

Вообще говоря, поверхность может быть замкнутой. В этом случае число линий индукции, входящих внутрь поверхности, равно числу линий, выходящих из нее (рис. 2). Если поверхность замкнута, то положительной нормалью к поверхности принято считать внешнюю нормаль.

Линии магнитной индукции замкнуты, что означает равенство нулю потока магнитной индукции через замкнутую поверхность. (Выходящие из поверхности линии дают положительный поток, а входящие – отрицательный.) Это фундаментальное свойство магнитного поля связано с отсутствием магнитных зарядов. Если бы не было электрических зарядов, то и электрический поток через замкнутую поверхность был бы равен нулю.

Электромагнитная индукция

Открытие электромагнитной индукции

В 1821 г. Майкл Фарадей записал в своем дневнике: «Превратить магнетизм в электричество». Через 10 лет эта задача была им решена.

М. Фарадей был уверен в единой природе электрических и магнитных явлений, но долгое время взаимосвязь этих явлений обнаружить не удавалось. Трудно было додуматься до главного: только меняющееся во времени магнитное поле может возбудить электрический ток в неподвижной катушке или же сама катушка должна двигаться в магнитном поле.

Открытие электромагнитной индукции, как назвал Фарадей это явление, было сделано 29 августа 1831 г. Вот краткое описание первого опыта, данное самим Фарадеем. «На широкую деревянную катушку была намотана медная проволока длиной в 203 фута (фут равен 304,8 мм), и между витками ее намотана проволока такой же длины, но изолированная от первой хлопчатобумажной нитью. Одна из этих спиралей была соединена с гальванометром, а другая - с сильной батареей, состоящей из 100 пар пластин... При замыкании цепи удалось заметить внезапное, но чрезвычайно слабое действие на гальванометр, и то же самое замечалось при прекращении тока. При непрерывном же прохождении тока через одну из спиралей не удавалось отметить ни действия на гальванометр, ни вообще какого-либо индукционного действия на другую спираль, не смотря на то что нагревание всей спирали, соединенной с батареей, и яркость искры, проскакивающей между углями, свидетельствовали о мощности батареи».

Итак, первоначально была открыта индукция в неподвижных друг относительно друга проводниках при замыкании и размыкании цепи. Затем, ясно понимая, что сближение или удаление проводников с током должно приводить к тому же результату, что и замыкание и размыкание цепи, Фарадей с помощью опытов доказал, что ток возникает при перемещении катушек относительно друг друга (рис. 3).

Знакомый с трудами Ампера, Фарадей понимал, что магнит - это совокупность маленьких токов, циркулирующих в молекулах. 17 октября, как зарегистрировано в его лабораторном журнале, был обнаружен индукционный ток в катушке во время вдвигания (или выдвигания) магнита (рис. 4).

В течение одного месяца Фарадей опытным путем открыл все существенные особенности явления электромагнитной индукции. Оставалось только придать закону строгую количественную форму и полностью вскрыть физическую природу явления. Уже сам Фарадей уловил то общее, от чего зависит появление индукционного тока в опытах, которые внешне выглядят по-разному.

В замкнутом проводящем контуре возникает ток при изменении числа линий магнитной индукции, пронизывающих поверхность, ограниченную этим контуром. Это явление называется электромагнитной индукцией.

И чем быстрее меняется число линий магнитной индукции, тем больше возникающий ток. При этом причина изменения числа линий магнитной индукции совершенно безразлична. Это может быть и изменение числа линий магнитной индукции, пронизывающих неподвижный проводник вследствие изменения силы тока в соседней катушке, и изменение числа линий вследствие движения контура в неоднородном магнитном поле, густота линий которого меняется в пространстве (рис. 5).

Правило Ленца

Индукционный ток, возникший в проводнике, немедленно начинает взаимодействовать с породившим его током или магнитом. Если магнит (или катушку с током) приближать к замкнутому проводнику, то появляющийся индукционный ток своим магнитным полем обязательно отталкивает магнит (катушку). Для сближения магнита и катушки нужно совершить работу. При удалении магнита возникает притяжение. Это правило выполняется неукоснительно. Представьте себе, что дело обстояло бы иначе: вы подтолкнули магнит к катушке, и он сам собой устремился бы внутрь нее. При этом нарушился бы закон сохранения энергии. Ведь механическая энергия магнита увеличилась бы и одновременно возникал бы ток, что само по себе требует затраты энергии, ибо ток тоже может совершать работу. Индуцированный в якоре генератора электрический ток, взаимодействуя с магнитным полем статора, тормозит вращение якоря. Только поэтому для вращения якоря нужно совершать работу, тем большую, чем больше сила тока. За счет этой работы и возникает ин-дукционный ток. Интересно отметить, что если бы магнитное поле нашей планеты было очень большим и сильно неоднородным, то быстрые движения проводящих тел на ее поверхности и в атмосфере были бы невозможны из-за интенсивного взаимодействия индуцированного в теле тока с этим полем. Тела двигались бы как в плотной вязкой среде и при этом сильно разогревались бы. Ни самолеты, ни ракеты не могли бы летать. Человек не мог бы быстро двигать ни руками, ни ногами, так как человеческое тело - неплохой проводник.

Если катушка, в которой наводится ток, неподвижна относительно соседней катушки с переменным током, как, например, у трансформатора, то и в этом случае направление индукционного тока диктуется законом сохранения энергии. Этот ток всегда направлен так, что созданное им магнитное поле стремится уменьшить изменения тока в первичной обмотке.

Отталкивание или притяжение магнита катушкой зависит от направления индукционного тока в ней. Поэтому закон сохранения энергии позволяет сформулировать правило, определяющее направление индукционного тока. В чем состоит различие двух опытов: приближение магнита к катушке и его удаление? В первом случае магнитный поток (или число линий магнитной индукции, пронизывающих витки катушки) увеличивается (рис. 6, а), а во втором случае - уменьшается (рис. 6, б). Причем в первом случае линии индукции В ’ магнитного поля, созданного возникшим в катушке индукционным током, выходят из верхнего конца катушки, так как катушка отталкивает магнит, а во втором случае, наоборот, входят в этот конец. Эти линии магнитной индукции на рисунке 6 изображены штрихом.

Рис. 6

Теперь мы подошли к главному: при увеличении магнитного потока через витки катушки индукционный ток имеет такое направление, что создаваемое им магнитное поле препятствует нарастанию магнитного потока через витки катушки. Ведь вектор индукции \(~\vec B"\) этого поля направлен против вектора индукции \(~\vec B\) поля, изменение которого порождает электрический ток. Если же магнитный поток через катушку ослабевает, то индукционный ток создает магнитное поле с индукцией \(~\vec B"\) , увеличивающее магнитный поток через витки катушки.

В этом состоит сущность общего правила определения направления индукционного тока, которое применимо во всех случаях. Это правило было установлено русским физиком Э. X. Ленцем (1804-1865).

Согласно правилу Ленца

возникающий в замкнутом контуре индукционный ток имеет такое на-правление, что созданный им магнитный поток через поверхность, ограниченную контуром, стремится препятствовать тому изменению потока, которое порождает данный ток.

индукционный ток имеет такое направление, что препятствует причине его вызывающей.

В случае сверхпроводников компенсация изменения внешнего магнитного потока будет полной. Поток магнитной индукции через поверхность, ограниченную сверхпроводящим контуром, вообще не меняется со временем ни при каких условиях.

Закон электромагнитной индукции

Опыты Фарадея показали, что сила индукционного тока I i в проводящем контуре пропорциональна скорости изменения числа линий магнитной индукции \(~\vec B\) , пронизывающих поверхность, ограниченную этим контуром. Более точно это утверждение можно сформулировать, используя понятие магнитного потока.

Магнитный поток наглядно истолковывается как число линий магнитной индукции, пронизывающих поверхность площадью S . Поэтому скорость изменения этого числа есть не что иное, как скорость изменения магнитного потока. Если за малое время Δt магнитный поток меняется на ΔФ , то скорость изменения магнитного потока равна \(~\frac{\Delta \Phi}{\Delta t}\) .

Поэтому утверждение, которое вытекает непосредственно из опыта, можно сформулировать так:

сила индукционного тока пропорциональна скорости изменения магнитного потока через поверхность, ограниченную контуром:

\(~I_i \sim \frac{\Delta \Phi}{\Delta t}\) .

Известно, что в цепи возникает электрический ток в том случае, когда на свободные заряды действуют сторонние силы. Работу этих сил при перемещении единичного положительного заряда вдоль замкнутого контура называют электродвижущей силой. Следовательно, при изменении магнитного потока через поверхность, ограниченную контуром, в нем появляются сторонние силы, действие которых характеризуется ЭДС, называемой ЭДС индукции. Обозначим ее буквой E i .

Закон электромагнитной индукции формулируется именно для ЭДС, а не для силы тока. При такой формулировке закон выражает сущность явления, не зависящую от свойств проводников, в которых возникает индукционный ток.

Согласно закону электромагнитной индукции (ЭМИ)

ЭДС индукции в замкнутом контуре равна по модулю скорости изменения магнитного потока через поверхность, ограниченную контуром:

\(~|E_i| = |\frac{\Delta \Phi}{\Delta t}|\) .

Как в законе электромагнитной индукции учесть направление индукционного тока (или знак ЭДС индукции) в соответствии с правилом Ленца?

На рисунке 7 изображен замкнутый контур. Будем считать положительным направление обхода контура против часовой стрелки. Нормаль к контуру \(~\vec n\) образует правый винт с направлением обхода. Знак ЭДС, т. е. удельной работы, зависит от направления сторонних сил по отношению к направлению обхода контура. Если эти направления совпадают, то E i > 0 и соответственно I i > 0. В противном случае ЭДС и сила тока отрицательны.

Пусть магнитная индукция \(~\vec B\) внешнего магнитного поля направлена вдоль нормали к контуру и возрастает со временем. Тогда Ф > 0 и \(~\frac{\Delta \Phi}{\Delta t}\) > 0. Согласно правилу Ленца индукционный ток создает магнитный поток Ф ’ < 0. Линии индукции B ’ магнитного поля индукционного тока изображены на рисунке 7 штрихом. Следовательно, индукционный ток I i направлен по часовой стрелке (против положительного направления обхода) и ЭДС индукции отрицательна. Поэтому в законе электромагнитной индукции должен стоять знак минус:

\(~E_i = - \frac{\Delta \Phi}{\Delta t}\) .

В Международной системе единиц закон электромагнитной индукции используют для установления единицы магнитного потока. Эту единицу называют вебером (Вб).

Так как ЭДС индукции E i выражают в вольтах, а время в секундах, то из закона ЭМИ вебер можно определить следующим образом:

магнитный поток через поверхность, ограниченную замкнутым контуром, равен 1 Вб, если при равномерном убывании этого потока до нуля за 1 с в контуре возникает ЭДС индукции равная 1 В:

1 Вб = 1 В ∙ 1 с.

Вихревое поле

Изменяясь во времени, магнитное поле порождает электрическое поле . К этому выводу впервые пришел Дж. Максвелл.

Теперь явление электромагнитной индукции предстает перед нами в новом свете. Главное в нем - это процесс порождения магнитным полем поля электрического. При этом наличие проводящего контура, например катушки, не меняет существа дела. Проводник с запасом свободных электронов (или других частиц) лишь помогает обнаружить возникающее электрическое поле. Поле приводит в движение электроны в проводнике и тем самым обнаруживает себя. Сущность явления электромагнитной индукции в неподвижном проводнике состоит не столько в появлении индукционного тока, сколько в возникновении электрического поля, которое приводит в движение электрические заряды.

Электрическое поле, возникающее при изменении магнитного поля, имеет совсем другую структуру, чем электростатическое. Оно не связано непосредственно с электрическими зарядами, и его линии напряженности не могут на них начинаться и кончаться. Они вообще нигде не начинаются и не кончаются, а представляют собой замкнутые линии, подобные линиям индукции магнитного поля. Это так называемое вихревое электрическое поле . Может возникнуть вопрос: а почему, собственно, это поле называется электрическим? Ведь оно имеет другое происхождение и другую конфигурацию, чем статическое электрическое поле. Ответ прост: вихревое поле действует на заряд q точно так же, как и электростатическое, а это мы считали и считаем главным свойством поля. Сила, действующая на заряд, по-прежнему равна \(~\vec F = q \vec E\) , где \(~\vec E\) - напряженность вихревого поля. Если магнитный поток создается однородным магнитным полем, сконцентрированным в длинной узкой цилиндрической трубке радиусом r 0 (рис. 8), то из соображений симметрии очевидно, что линии напряженности электрического поля лежат в плоскостях, перпендикулярных линиям \(~\vec B\) , и представляют собой окружности. В соответствии с правилом Ленца при возрастании магнитной индукции \(~\left (\frac{\Delta B}{\Delta t} > 0 \right)\) линии напряженности \(~\vec E\) образуют левый винт с направлением магнитной индукции \(~\vec B\) .

В отличие от статического или стационарного электрического поля работа вихревого поля на замкнутом пути не равна нулю. Ведь при перемещении заряда вдоль замкнутой линии напряженности электрического поля работа на всех участках пути имеет один и тот же знак, так как сила и перемещение совпадают по направлению. Вихревое электрическое поле, так же как и магнитное поле, не потенциальное.

Работа вихревого электрического поля по перемещению единичного положительного заряда вдоль замкнутого неподвижного проводника численно равна ЭДС индукции в этом проводнике.

Итак, переменное магнитное поле порождает вихревое электрическое поле. Но не кажется ли вам, что одного утверждения здесь недостаточно? Хочется знать, каков же механизм данного процесса. Нельзя ли разъяснить, как эта связь полей осуществляется в природе? И вот тут-то ваша естественная любознательность не может быть удовлетворена. Никакого механизма здесь просто нет. Закон электромагнитной индукции - это фундаментальный закон природы, значит, основной, первичный. Действием его можно объяснить многие явления, но сам он остается необъяснимым просто по той причине, что нет более глубоких законов, из которых бы он вытекал в виде следствия. Во всяком случае сейчас такие законы неизвестны. Таковыми являются все основные законы: закон тяготения, закон Кулона и т.д.

Мы, конечно, вольны ставить перед природой любые вопросы, но не все они имеют смысл. Так, например, можно и нужно исследовать причины различных явлений, но пытаться выяснить, почему вообще существует причинность, - бесполезно. Такова природа вещей, таков мир, в котором мы живем.

Литература

  1. Жилко В.В. Физика: Учеб. пособие для 10-го кл. общеобразоват. шк. с рус. яз. обучения / В.В. Жилко, А.В. Лавриненко, Л.Г. Маркович. – Мн.: Нар. асвета, 2001. – 319 с.
  2. Мякишев, Г.Я. Физика: Электродинамика. 10-11 кл. : учеб. для углубленного изучения физики / Г.Я. Мякишев, А.3. Синяков, В.А. Слободсков. – М.: Дрофа, 2005. – 476 с.

В учебнике физики для IX класса дан краткий экскурс в историю открытия рассматриваемого закона. Обзор целесообразно дополнить. Речь идет о фундаментальном законе природы, и нужно раскрыть все его стороны в процессе становления. Рассказ о процессе поисков закона Фарадеем особенно поучителен, и здесь не нужно- жалеть времени.
Майкл Фарадей родился в 1791 г. в окрестностях Лондона в семье кузнеца. Отец не имел средств для платы за учебу, и Фарадей в 13 лет был вынужден начать изучение переплетного дела. К счастью, он попал в ученики к владельцу книжного магазина. Любознательный мальчик жадно читал, причем нелегкую литературу. Его привлекали статьи по естественным наукам в Британской энциклопедии, он штудировал «Беседы о химии» Марсе. В 1811 г. Фарадей начал посещать общедоступные лекции по физике известного лондонского педагога Тэтума.
Поворотным в жизни Фарадея был 1812 г. Клиент владельца книжного магазина, член Королевского института Дэнс рекомендовал юноше прослушать лекции знаменитого химика Гэмфрн Дэви . Фарадей последовал доброму совету; он жадно слушал и тщательно конспектировал. По совету того же Дэнса он обработал записи и послал их Дэви, присоединив просьбу о предоставлении возможности исследовательской работы. В 1813 г. Фарадей получил место лаборанта в химической лаборатории Королевского института, которой руководил Дэви.
Вначале Фарадей - химик. Он быстро становится на путь самостоятельного творчества, и самолюбию Дэви приходится часто страдать от успехов ученика. В 1820 г. Фарадей узнает об открытии Эрстеда, и с этих пор его мысли поглощают электричество и магнетизм. Он начинает свои знаменитые экспериментальные исследования, приведшие к преобразованию физического мышления. В 1823 г. Фарадей был избран членом Лондонского Королевского общества, а затем назначен директором физической и химической лабораторий Королевского института. В стенах этих лабораторий были совершены величайшие открытия. Жизнь Фарадея, внешне монотонная, поразительна по творческому напряжению. О нем свидетельствует трехтомный: труд «Экспериментальные исследования по электричеству», в котором отражен шаг за шагом творческий путь гения.
В 1820 г. Фарадей ставит принципиально новую проблему: «превратить магнетизм в электричество». Это было вскоре после открытия магнитного действия токов. В опыте Эрстеда электрический ток действует, на магнит. Поскольку, согласно Фарадею, все силы природы взаимопревращаемы, можно, наоборот, магнитной силой возбудить электрический ток.
Фарадей ожижает газы, производит тонкие химические анализы, открывает новые химические свойства веществ. Но мысль его неотступно занята поставленной проблемой. В 1822 г. он описывает попытку обнаружить «состояние», обусловленное течением тока: «поляризовать луч света от лампы путем отражения и попытаться обнаружить, не окажет ли деполяризующее действие вода, расположенная между полюсами, вольтовой батареи в стеклянном сосуде...» Фарадей надеялся таким образом получить какую-нибудь информацию о свойствах тока. Но опыт не дал ничего. Далее следует 1825 год. Фарадей публикует статью «Электромагнитный ток (под влиянием магнита)», в которой высказывает следующую мысль. Если ток действует на магнит, то он должен испытывать, противодействие. «По разным соображениям, - пишет Фарадей,- было сделано предположение, что приближение полюса сильного магнита будет уменьшать электрическийток». И он описывает опыт, реализующий эту идею.
В дневнике от 28 ноябряря 1825 г. описан аналогичный опыт. Батарея гальванических элементов соединялась проводом. Параллельно этому проводу располагался другой (провода разделялись двойным слоем бумаги), концы которого присоединялись к гальванометру. Фарадей рассуждал, по-видимому, так. Если ток есть движение электрической жидкости и это движение действует на постоянный магнит - совокупность токов (по гипотезе Ампера), то движущаяся жидкость в одном проводнике должна заставить двигаться неподвижную - в другом, и гальванометр должен зафиксировать ток. «Разные соображения», о которых писал Фарадей при изложении первого опыта, сводились к тому же, только там ожидалась реакция движущегося в проводнике электрического флюида со стороны молекулярных токов постоянного магнита. Но опыты дали отрицательный результат.
Решение пришло в 1831 г., когда Фарадей предположил, что индукция должна возникнуть при и нестационарном процессе. Это была ключевая мысль, приведшая к открытию явления электромагнитной индукции.
Возможно, что к идее изменения тока заставило обратиться сообщение, полученное из Америки. Известие пришло от американского физика Джозефа Генри (1797 - 1878).
В юные годы Генри не проявлял ни исключительных способностей, ни интереса к науке. Вырос он в нищете, был батраком на ферме, актером. Так же, как и Фарадей, он занимайся самообразованием. Учиться начал с 16 лет в академии города Олбани. За семь месяцев он усвоил столько знаний, что получил место учителя в сельской школе. Затем Генри работал у профессора химии Бека в качестве лекционного ассистента. Работу он совмещал с учебой в академии. После окончания курса Генри был назначен инженером и инспектором на канале Эри. Через несколько месяцев он оставил эту выгодную должность, приняв приглашение на должность профессора математики и физики в Олбани. В это время английский изобретатель Вильям Стерджен (1783 - 1850) сообщил о своем изобретении подковообразного магнита, способного поднять стальное тело весом до четырех килограммов.
Генри увлекся электромагнетизмом. Он сразу же нашел способ увеличить подъемную силу до тонны. Достичь этого удалось новым в то время приемом: вместо изоляции тела магнита изолировался провод. Открылся способ создания многослойных обмоток. Еще в 1831 г. Генри показал возможность построения электродвигателя, изобрел электромагнитное реле, и с его помощью демонстрировал передачу электрических сигналов на расстояние, предвосхитив изобретение Морзе (телеграф Морзе появился в 1837 г.).
Подобно Фарадею Генри поставил перед собой задачу получить электрический ток с помощью магнита. Но это была постановка задачи изобретателя. И поиски направлялись голой интуицией. Открытие произошло за несколько лет до опытов Фарадея. Постановка ключевого опыта Генри изображена на рисунке 9. Здесь все так же, как показывается до сих пор. Только гальваническому элементу мы предпочитаем более удобный аккумулятор, а вместо крутильных весов пользуемся гальванометром.
Но Генри не сообщил об этом опыте никому. «Мне следовало напечатать это раньше,- говорил он сокрушенно своим друзьям,- Но у меня было так мало времени! Хотелось свести полученные результаты в какую-то систему» (курсив мой.- В. Д.). И отсутствие регулярного образования и еще более - утилитарно- изобретательский дух американской науки сыграли плохую роль. Генри, конечно, не понял и не почувствовал глубины и важности нового открытия. В противном случае он, конечно, оповестил бы ученый мир о величайшем факте. Умолчав об индукционных опытах, Генри сразу же послал сообщение, когда ему удалось поднять электромагнитом целую тонну.
Именно это сообщение и получил Фарадей. Возможно, оно послужило последним звеном в цепи умозаключений, приведших к ключевой идее. В опыте 1825 г. два провода отделялись бумагой. Индукция должна была быть, но не обнаруживалась вследствие слабости эффекта. Генри показал, что в электромагните эффект резко усиливается при применении многослойной обмотки. Следовательно, индукция должна возрасти, если индуктивное действие будет передаваться по большой длине. В самом деле, магнит - собрание токов. Возбуждение намагничивания в стальном стержне при пропускании тока по обмотке есть индукция тока током. Она усиливается, если путь тока по обмотке становится длиннее.
Такова возможная цепь логических умозаключений Фарадея. Вот полное описание первого успешного опыта: «Двести три фута медной проволоки в одном куске были намотаны на большой деревянный барабан; другие двести три фута такой же проволоки были проложены в виде спирали между витками первой обмотки, причем металлический контакт был везде устранен посредством шнурка. Одна из этих спиралей была соединена с гальванометром, а другая - с хорошо заряженной батареей из ста пар пластин в четыре квадратных дюйма с двойными медными пластинками. При замыкании контакта наблюдалось внезапное, но очень слабое действие на гальванометр, и подобное же слабое действие имело место при размыкании контакта с батареей».
Таков был первый опыт, давший положительный результат после десятилетних поисков. Фарадей устанавливает, что при замыкании и размыкании возникают индукционные токи противоположных направлений. Далее он переходит к изучению влияния железа на индукцию.
«Из круглого брускового, мягкого железа было сварено кольцо; толщина металла была равна семи-восьми дюймам, а наружный диаметр кольца - шести дюймам. На одну часть этого кольца было намотано три спирали, каждая из которых содержала около двадцати четырех футов медной проволоки толщиной в одну двадцатую дюйма. Спирали были изолированы от железа и друг от друга и наложены одна на другую... Ими можно было пользоваться по отдельности и в соединении; эта группа обозначена буквой А (рис. 10). На другую часть кольца было намотано таким же способом около шестидесяти футов такой же медной проволоки в двух кусках, образовавших спираль В, которая имела одинаковое направление со спиралями А, но была отделена от них на каждом конце на протяжении примерно полудюйма голым железом.
Спираль В соединялась медными проводами с гальванометром, помещенным на расстоянии трех футов от кольца. Отдельные спирали А соединялись конец с концом так, что образовали общую спираль, концы которой были соединены с батареей из десяти пар пластин в четыре квадратных дюйма. Гальванометр реагировал немедленно, притом значительно сильнее, чем это наблюдалось выше, при пользовании в десять раз более мощной спиралью без железа».
Наконец, Фарадей производит опыт, с которого до сих пор обычно начинают изложение вопроса об электромагнитной индукции. Это было точное повторение опыта Генри, изображенного на рисунке 9.
Задача, поставленная Фарадеем в 1820 г., была решена: магнетизм был превращен в электричество.
Вначале Фарадей различает индукцию тока от тока (ее он называет «вольта-электрическая индукция» и тока от магнита («магнито-электрическая индукция»). Но затем он показывает, что все случаи подчиняются одной общей закономерности.
Закон электромагнитной индукции охватил и другую группу явлений, которая получила впоследствии название явлений самоиндукции. Фарадей назвал новое явление так: «Индуктивное влияние электрического тока на самого себя».
Вопрос этот возник в связи со следующим фактом, сообщенным Фарадею в 1834 г. Дженкиным. Факт этот заключался в следующем. Две пластины гальванической батареи соединяются проволокой небольшой длины. При этом никакими ухищрениями экспериментатору не удается получить от этой проволоки электрического удара. Но если взять вместо проволоки обмотку электромагнита, то всякий раз при размыкании цепи ощущается удар. Фарадей писал: «Одновременно наблюдается другое, давно известное ученым явление, а именно: в месте разъединения проскакивает яркая электрическая искра» (курсив мой - В. Д.).
Фарадей начал обследование этих фактов и вскоре открыл ряд новых сторон явления. Ему понадобилось немного времени, Чтобы установить «тождественность явлений с явлениями индукции». Опыты, которые до сих пор демонстрируются и в.средней, и в высшей школе при объяснении явления самоиндукции, были поставлены Фарадеем в 1834 г.
Независимо аналогичные опыты были поставлены Дж. Генри, однако, как и опыты по индукции, они своевременно не были опубликованы. Причина та же: Генри не нашел физической концепции, охватывающей разнообразные по форме явления.
Для Фарадея самоиндукция была фактом, осветившим дальнейший путь поисков. Обобщая наблюдения, он приходит к заключениям большого принципиального значения. «Не подлежит сомнению, что ток в одной части провода может действовать путем индукции на другие части того же самого провода, находящиеся рядом... Именно это и создает впечатление, что ток действует на самого себя».
Не зная природы тока, Фарадей тем не менее точно указывает на суть дела: «Когда ток действует путем индукции нарядом с ним расположенное проводящее вещество, то, вероятно, он действует на имеющееся в этом проводящем веществе электричество,- все равно, находится ли последнее в состоянии тока или же оно неподвижно; в первом случае он усиливает или ослабляет ток, смотря по его направлению во втором - создает ток».
Математическое выражение закона электромагнитной индукций дал в 1873 г. Максвелл в «Трактате по электричеству и магнетизму». Только после этого он стал основой количественных расчетов. Так что закон электромагнитной индукции следует называть законом Фарадея-Максвелла.
Методические замечания . Известно, что возбуждение индукционного тока в проводнике, движущемся в постоянном магнитном поле, и в неподвижном проводнике, который находится в переменном магнитном поле, подчиняется одному и тому же закону . Для Фарадея и Максвелла это было очевидно, поскольку они представляли себе линии магнитной индукции как реальные образования в эфире. При включении и выключении тока или изменениях силы тока вокруг проводников, составляющих цепь, линии магнитной индукции перемещаются. При этом они пересекают саму цепь, обусловливая явление самоиндукции. Если около цепи с изменяющимся током находится какой-либо проводник, то линии магнитной индукции, пересекая его, возбуждают ЭДС электромагнитной индукции.
Материализация силовых линий электрического поля и линий магнитной индукции стали достоянием истории. Однако было бы ошибочно придавать силовым линиям лишь формальный характер. Современная физика считает, что силовая линия электрического поля и линия магнитной индукции- это геометрическое место точек, в которых данное поле имеет состояние, отличное от состояния в других точках. Это состояние определяется значениями векторов и в этих точках. При изменениях поля векторы и изменяются, соответственно изменяется, конфигурация силовых линий. Состояние поля может перемещаться в пространстве со скоростью света. Если проводник находится в поле, состояние которого изменяется, в проводнике возбуждается ЭДС.

Случай, когда поле постоянно, а проводник перемещается в этом поле, не описывается теорией Максвелла. Впервые на это обратил внимание Эйнштейн. Его основополагающая, работа «К электродинамике движущихся тел» как раз и начинается с обсуждения недостаточности теории Максвелла в этом пункте. Явление возбуждения ЭДС в проводнике, движущемся е постоянном магнитном поле, может быть включено в рамки теории электромагнитного поля, если ее дополнить принципом относительности и принципом постоянства скорости света.