Электронный таймер включения - выключения. Как сделать реле времени своими руками: схема подключения Описание электрической схемы простого цифрового таймера

Электронный таймер включения - выключения. Как сделать реле времени своими руками: схема подключения Описание электрической схемы простого цифрового таймера
Электронный таймер включения - выключения. Как сделать реле времени своими руками: схема подключения Описание электрической схемы простого цифрового таймера

Конструкция выполнена только на одной микросхеме К561ИЕ16 . Так как, для его правильной работы нужен внешний генератор тактовых импульсов, то в нашем случае мы его заменим простым мигающим светодиодом.

Как только подадим напряжение питание на схему таймера, емкость С1 начнет заряжаться через резистор R2 поэтому на выводе 11 кратковременно появится логическая единица, сбрасывающая счетчик. Транзистор, подсоединенный к выходу счетчика, откроется и включит реле, которое через свои контакты подключит нагрузку.


С мигающего светодиода с частотой 1,4 Гц поступают импульсы на тактовый вход счетчика. C каждым импульсным перепадом идет счет счетчика. Через 256 импульсов или около трех минут, на выводе 12 счетчика появится уровень логической единицы, а транзистор закроется, отключив реле и коммутируемую через его контакты нагрузку. К тому же эта логическая единица проходит на тактовый вход DD, останавливая работу таймера. Время работы таймера можно подобрать путем подключения точки «А» схемы к различным выходам счетчика.

Схема таймера выполнена на микросхеме КР512ПС10 , которая имеет в своем внутреннем составе двоичный счетчик-делитель и мультивибратор. Как и у обычного счетчика эта микросхема имеет коэффициент деления от 2048 до 235929600. Выбор требуемого коэффициента задается путем подачи логических сигналов на входы управления M1, M2, M3, M4, M5.

Для нашей схемы таймера коэффициент деления выбран 1310720. В таймере имеется шесть фиксированных временных интервалов: пол часа, полтора часа, три часа, шесть часов, двенадцать часов и сутки часа. Частота работы встроенного мультивибратора определяется номиналами резистора R2 и конденсатора C2 . При переключении переключателя SA2 изменяется частота мультивибратора, а проходя через счетчик-делитель и временной интервал.

Схема таймера запускается сразу после включения питания или для сброса таймера можно нажать на тумблер SA1. В исходном состоянии на девятом выходе будет уровень логической единицы а на десятом инверсном выходе соответственно нуля. В результате этого транзистор VT1 подсоединит светодиодную часть оптотиристоров DA1, DA2 . Тиристорная часть имеет встречно-параллельное включение, это позволяет регулировать переменное напряжение.

По завершению отсчета времени на девятом выходе установится ноль и отключит нагрузку. А на выходе 10 появится единица, которая остановит счетчик.

Запуск схемы таймера осуществляется при нажатии одной из трех кнопок с фиксацией временного интервала, при этом он начинает обратный отсчет. Параллельно с нажатием кнопки загорается светодиод соответствующий кнопки.


По истечению временного интервала таймер издает звуковой сигнал. Последующее нажатие отключит схему. Временные промежутки изменяются номиналами радиокомпонентов R2, R3, R4 и C1 .

Схема таймера , который обеспечивает задержку выключения, показана на первом рисунке Здесь транзистор с каналом р- типа (2) включён в цепь питания нагрузки, а транзистор с каналом п-типа (1) им управляет.

Схема таймера работает следующим образом. В исходном состоянии конденсатор С1 разряжен, оба транзистора закрыты и нагрузка обесточена. При кратковременном нажатии на кнопку Пуск затвор второго транзистора соединяется с общим проводом, напряжение между его истоком и затвором становится равным напряжению питания, он мгновенно открывается, подключая нагрузку. Возникший на ней скачок напряжения через конденсатор С1 поступает на затвор первого транзистора, который также открывается, поэтому затвор второго транзистора останется соединённым с общим проводом и после отпускания кнопки.

По мере зарядки конденсатора С1 через резистор R1 напряжение на нём повышается, а на затворе первого транзистора (относительно общего провода) понижается. Через некоторое время, зависящее в основном от ёмкости конденсатора С1 и сопротивления резистора R1, оно снижается настолько, что транзистор начинает закрываться и напряжение на его стоке повышается. Это приводит к уменьшению напряжения на затворе второго транзистора, поэтому последний также начинает закрываться и напряжение на нагрузке понижается. В результате напряжение на затворе первого транзистора начинает уменьшаться ещё быстрее.

Процесс протекает лавинообразно, и вскоре оба транзистора закрываются, обесточивая нагрузку, конденсатор С1 быстро разряжается через диод VD1 и нагрузку. Устройство снова готово к запуску. Так как полевые транзисторы сборки начинают открываться при напряжении затвор-исток 2,5...3 В, а максимально допустимое напряжение между затвором и истоком - 20 В, то устройство может работать при питающем напряжении от 5 до 20 В (номинальное напряжение конденсатора С1 должно быть на несколько вольт больше питающего). Время задержки выключения зависит не только от параметров элементов С1, R1, но и от напряжения питания. Например, повышение напряжения питания с 5 до 10 В приводит к его увеличению примерно в 1,5 раза (при номиналах элементов, указанных на схеме, оно составило 50 и 75 с соответственно).

Если при закрытых транзисторах напряжение на резисторе R2 окажется более 0,5 В, то его сопротивление необходимо уменьшить. Устройство, обеспечивающее задержку включения, можно собрать по схеме, показанной на рис. 2. Здесь транзисторы сборки включены примерно так же, но напряжение на затвор первого транзистора и конденсатор С1 поступает через резистор R2. В исходном состоянии (после подключения источника питания или после нажатия на кнопку SB1) конденсатор С1 разряжен и оба транзистора закрыты, поэтому нагрузка обесточена. По мере зарядки через резисторы R1 и R2 напряжение на конденсаторе повышается, и когда оно достигает значения примерно 2,5 В, первый транзистор начинает открываться, падение напряжения на резисторе R3 увеличивается и второй транзистор также начинает открываться. Когда напряжение на нагрузке возрастает настолько, что диод VD1 открывается, напряжение на резисторе R1 повышается. Это приводит к тому, что первый транзистор, а за ним и второй открываться быстрее и устройство скачком переключается в открытое состояние, замыкая цепь питания нагрузки

Схема таймера - повторный запуск, для этого необходимо нажать на кнопку и удерживать её в таком состоянии 2...3 с (этого времени достаточно для полной разрядки конденсатора С1). Таймеры монтируют на печатных платах из фольгированного с одной стороны стеклотекстолита, чертежи которых изображены соответственно на рис. 3 и 4. Платы рассчитаны на применение диода серий КД521, КД522 и деталей для поверхностного монтажа (резисторов Р1-12 типоразмера 1206 и танталового оксидного конденсатора). Налаживание устройств сводится в основном к подбору резисторов для получения требуемой выдержки времени.

Описанные устройства предназначены для включения в плюсовой провод питания нагрузки. Однако, поскольку сборка IRF7309 содержит транзисторы с каналом обоих типов, таймеры нетрудно приспособить для включения и в минусовый провод. Для этого транзисторы следует поменять местами и изменить на обратную полярность включения диода и конденсатора (естественно, это потребует и соответствующих изменений в чертежах печатных плат). Следует учесть, что при длинных соединительных проводах или отсутствии в нагрузке конденсаторов возможны наводки на эти провода и неуправляемое включение таймера Чтобы повысить помехоустойчивость, к его выходу надо подключить конденсатор ёмкостью несколько микрофарад с номинальным напряжением не менее напряжения питания.

Схема таймера на пять минут

Если временной интервал больше5 минут, устройство можно перезапустить и продолжать отсчет заново.

После кратковременного замыкания SВ1 начинает заряжаться емкость С1, включенный в коллекторную цепь транзистора VТ1. Напряжение с С1 поступает на усилитель с большим входным сопротивлением на транзисторах VТ2- VТ4 . Его нагрузкой является светодиодный индикатор, включающихся поочередно через минуту.

Конструкция позволяет выбрать один из пяти возможных временных интервалов: 1.5, 3, 6, 12 и 24 часа . Нагрузка подсоединяется к сети переменного тока в момент начала отсчета времени и отключается по завершению отсчета. Временные промежутки задаются с помощью частотного делителя сигналов прямоугольной формы, генерируемых RC- мультивибратором.

Задающий генератор выполнен на логических компонентах DD1.1 и DD1.2 микросхемы К561ЛЕ5 . Частота генерации формируется RC-цепочкой на R1,C1 . Точность хода настраивается по наименьшему временному интервалу, с помощью подбора сопротивления R1 (временно при регулировке его желательно заменить переменным сопротивлением). Для создания необходимых временных диапазонов, импульсы с выхода мультивибратора идут на два счетчика DD2 и DD3, в результате осуществляется деление частоты.

Эти два счетчика - К561ИЕ16 подсоединены последовательно, но для одновременного сброса, выводы обнуления подключены вместе. Сброс происходит при помощи переключателя SA1. Другим тумблером SA2 осуществляется выбор необходимого временного диапазона.


Когда на выходе DD3 возникнет логическая единица, она поступает на вывод 6 DD1.2 в результате чего генерация импульсов мультивибратором заканчивается. Одновременно сигнал логической единицы следует на вход инвертора DD1.3 к выходу которого подсоединен VT1. Когда на выходе DD1.3 появится логический ноль транзистор закрывается и отключает светодиоды оптопар U1 и U2, а это выключает симистора VS1 и подключенную к нему нагрузку.

При сбросе счетчиков, на их выходах устанавливаются нули, в том числе и на выходе, на который установлен переключатель SA2. На входе DD1.3 также подается нуль и соответственно на его выходе единица, что подключает нагрузку к сети . Так же параллельно и на входе 6 DD1.2 установится нулевой уровень, что запустит мультивибратор, и таймер начнет отсчет времени. Питание таймера осуществляется по бестрансформаторной схеме, состоящей из компонентов С2, VD1, VD2 и С3.

Когда тумблер SW1 замкнут конденсатор С1 начинает медленно заряжаться через сопротивление R1, а когда уровень напряжения на нем составит 2/3 от питающего, на это отреагирует триггер IC1. При этом напряжение на третьем выводе снизится до нуля, и цепь с лампочкой разомкнется.

При сопротивление резистора R1 в 10М (0,25 Вт) и емкости C1 47 мкФ x 25 В время работы устройства около 9 с половиной минут, при желание его можно изменить путем регулировки номиналов R1 и C1. Пунктирной линией на рисунке обозначеноо включение дополнительного выключателя, с помощью которого можно включать цепь с лампочкой даже при замкнутом тумблере. Ток покоя конструкции всего 150 мкА. Транзистор BD681 - составной (Дарлингтона) средней мощности. Можно заменить на BD675A/677A/679A.

Это схема таймера на микроконтроллере PIC16F628A позаимствована с хорошего португальского сайта по радиоэлектронике. Микроконтроллер тактируется от внутреннего генератора, который можно считать достаточно точным для данного момента, так как выводы 15 и 16 остаются свободными, то можно использовать внешний кварцевый резонатор для еще большей точности в работе.

С помощью электронных реле можно неплохо экономить деньги, к примеру, возьмем свет в коридоре, кладовке или подъезде. Нажимая кнопку, мы включаем свет и через определенное время он автоматически отключается. Этого времени должно хватить на поиски предмета в коридоре, кладовке или попадание в квартиру. К тому же освещение без надобности не горит, если вы забыли его выключить. Это устройство не только полезно, но и очень удобно. В этой статье мы расскажем, как сделать реле времени своими руками, предоставив все необходимые схемы и инструкции.

Простейший вариант

Пример конструктора для самодельной сборки таймера задержки отключения:

При желании возможно самостоятельно собрать реле времени по следующей схеме:

Времязадающим элементом является С1, в стандартной комплектации КИТ-набора он имеет следующие характеристики: 1000 мкФ/16 В, время задержки в этом случае составляет приблизительно 10 минут. Регулировка времени осуществляется переменным R1. Питание платы 12 Вольт. Управление нагрузкой производится через контакты реле. Плату можно не делать, а собрать на макетной плате или навесным монтажом.

Для того, чтобы сделать реле времени, нам понадобятся следующие детали:

Правильно собранное устройство не нуждается в настройке и готово к работе. Данное самодельное реле задержки времени было описано в журнале «Радиодело» 2005.07.

Самоделка на базе таймера NE 555

Другая схема электронного таймера для сборки своими руками также легка и доступна для повторения. Сердцем данной схемы является микросхема интегрального таймера «NE 555». Данный прибор предназначен как для отключения, так и включения устройств, ниже представлена схема устройства:

NE555 – это специализированная микросхема, используемая в построении всевозможных электронных устройств, таймеров, генераторов сигнала и т.д. Она достаточно распространена, поэтому ее можно найти в любом радиомагазине. Данная микросхема управляет нагрузкой через электромеханическое реле, которое можно задействовать как на включение, так и на выключение полезной нагрузки.

Управление таймером осуществляется двумя кнопками: «старт» и «стоп». Для начала отсчета времени необходимо нажать на кнопку «старт». Отключение и возврат устройства в первоначальное состояние осуществляется кнопкой «стоп». Узлом, задающем интервал времени, является цепочка из переменного резистора R1 и электролитического конденсатора C1. От их номинала зависит величина задержки включения .

При данных номиналах элементов R1 и C1, диапазон времени может быть от 2 секунд до 3 минут. В качестве индикатора состояния работоспособности конструкции используется включенный параллельно катушке реле светодиод. Как и в предыдущей схеме, для ее функционирования требуется дополнительный источник внешнего питания на 12 Вольт.

Для того чтобы реле само включалось сразу при подаче на плату питания, необходимо немного изменить схему: вывод 4 микросхемы соединить с плюсовым проводом, вывод 7 отключить, а выводы 2 и 6 соединить вместе. Более наглядно о данной схеме можно узнать из видео, где подробно описан процесс сборки и работы с устройством:

Реле на одном транзисторе

Самый простой вариант — использовать схему реле времени всего на одном транзисторе, КТ 973 А, его импортный аналог BD 876. Данное решение также основано на заряде конденсатора до напряжения питания, через потенциометр (переменный резистор). Изюминка схемы заключается в принудительном переключении и разряде емкости через резистор R2 и возвращении исходного начального положения тумблером S1.

При подаче питания на устройство емкость С1 начинается заряжаться через резистор R1 и через R3, открывая тем самым транзистор VT1. Когда емкость зарядится до состояния отключения VT1, обесточивается реле, тем самым отключая или включая нагрузку, в зависимости от назначения схемы и используемого типа реле.

Выбранные вами элементы могут иметь незначительный разброс в номиналах, это не повлияет на работоспособность схемы. Задержка может немного отличаться и зависеть от температуры окружающей среды, а также от величины сетевого напряжения. На фото ниже предоставлен пример готовой самоделки:

Теперь вы знаете, как сделать реле времени своими руками. Надеемся, предоставленные инструкции пригодились вам и вы смогли собрать данную самоделку в домашних условиях!


До сих пор для отсчёта небольших промежутков времени некоторые люди используют песочные часы. Наблюдать за движением песчинок в таких часах весьма увлекательно, но использовать их в качестве таймера не всегда удобно. Поэтому на их смену приходит электронный таймер, схема которого представлена ниже.

Схема таймера


В её основе лежит широко распространённая недорогая микросхема NE555. Алгоритм работы следующий - при кратковременном нажатии на кнопку S1 на выходе OUT появляется напряжение, равное напряжению питания схемы и загорается светодиод LED1. По истечению заданного промежутка времени светодиод погасает, напряжение на выходе становится равным нулю. Время работы таймера задаётся подстроечным резистором R1 и может изменяться в пределах от нуля до 3-4 минут. Если есть необходимость увеличить максимальное время задержки таймера, то можно поднять ёмкость конденсатора С1 до 100 мкФ, тогда оно будет составлять примерно 10 минут. В качестве транзистора Т1 можно применить любой биполярный транзистор средней или малой мощности структуры n-p-n, например, BC547, КТ315, BD139. В качестве кнопки S1 используется любая кнопка на замыкание без фиксации. Питается схема напряжением 9 – 12 вольт, ток потребления без нагрузки не превышает 10 мА.

Изготовление таймера

Схема собирается на печатной плате размерами 35х65, файл для программы Sprint Layout к статье прилагается. Подстроечный резистор можно установить прямо на плату, а можно вывести на проводах и для регулировки времени работы использовать потенциометр. Для подключения проводов питания и нагрузки на плате предусмотрены места под винтовые клеммники. Плата выполняется методом ЛУТ, несколько фотографий процесса:




Скачать плату:

(cкачиваний: 251)


После впаивания всех деталей плату обязательно нужно отмыть от флюса, соседние дорожки прозвонить на замыкание. Собранный таймер в настройке не нуждается, остаётся лишь установить нужное время работы и нажать кнопку. К выходу OUT можно подключить реле, в этом случае таймер сможет управлять мощной нагрузкой. При установке реле параллельно его обмотке следует поставить диод для защиты транзистора. Область применения такого таймера очень широка и ограничивается лишь фантазией пользователя. Удачной сборки!

Устройством, в котором использованы электронные и механические элементы и которое срабатывает по истечении определенного промежутка времени, является реле времени. Эти механизмы получили широкое распространение во многих областях, таких как электроника, электрика и электротехника. Чтобы сделать таймер, придется применять различные схемы, отличающиеся разной степенью сложности.

Принцип работы

Наличие реле в определенной схеме позволяет собрать более гибкие по контролируемости устройства. Причем реализовать можно большое количество решений. Поэтому необходимо рассматривать каждое конструкционное предложение по отдельности. По виду исполняемой деятельности на практике применяют электромагнитные, электронные и пневматические системы, а также решения для часовых механизмов.

Электромагнитные устройства, как правило, могут применяться только в схемах с постоянным источником тока. Промежуток времени действия обычно бывает 0,06−0,1 сек. для включения и 0,6−1,4 - для выключения. Такие реле содержат два рабочих слоя обмотки, один из них - короткозамкнутый кольцеобразный контур.

Когда на первую обмотку подается электрический ток, магнитный поток растет. Он формирует ток второй обмотки, вследствие чего рост основного потока прекращается. В итоге появляется временная характеристика смещения якоря механизма, формируется временная выдержка.

Если прекратить подачу электротока в контур первой обмотки, то магнитное поле второй обмотки будет оставаться активным еще какое-то время. Все это происходит из-за эффекта индуктивности. Из этого следует, что реле в это время не отключается.

Пневматика и часовой тип

Схемы на основе пневматических систем - уникальные. Эти приборы содержат специальную систему замедления - демпферное устройство пневматического типа. Время выдержки «пневматики» можно настраивать путем расширения или сужения сечения трубы, откуда подается воздух. Для такой операции в конструкции предусмотрен специальный регулировочный винт.

Временная задержка здесь колеблется в районе 1–60 сек. Однако есть экземпляры, срабатывающие в два раза быстрее. В действительности существуют небольшие погрешности по указанному времени.

Устройства, именуемые часовыми реле, широко распространены в электрике. Такой тип активно используют для сооружения автоматических рубильников, которые защищают цепи напряжением 500−10000 вольт. Время срабатывания - 0,1−20 сек.

Основой часовых реле является пружина, которая взводится электромагнитным механическим приводом. Контактные группы часового механизма коммутируют после пройденного промежутка времени, заданного заранее на специальной шкале устройства.

Скорость хода прибора напрямую зависит от силы тока, проходящего в обмотке. Это помогает настроить устройство под защитные функции. Главной особенностью такой защиты является полная независимость от влияния внешних факторов.

Электронные реле

Электронные реле пришли на смену устаревающим электромеханическим устройствам. У таких приборов есть немало преимуществ:

  • Небольшие габариты.
  • Точность действия.
  • Гибкий модуль настройки.
  • Воспроизведение информации.

Работа электронных реле основана на принципе цифровых импульсных счетчиков. Большое количество сегодняшних приборов имеют в базе высокопроизводительные микропроцессоры.

Чтобы настроить электронный механизм, нужно лишь задать определенные параметры с помощью специальных функциональных клавиш, которые расположены на передней части прибора. Причем настройка гибкая, то есть можно устанавливать не только секунды, минуты, часы, но и дни недели.

Недельный таймер

Электронный таймер включений-выключений в автоматическом режиме используется в разных сферах. «Недельное» реле коммутирует в рамках заранее установленного недельного цикла. Прибор позволяет:

  • Обеспечить функции коммутации в системах освещения.
  • Включать/выключать технологическое оборудование.
  • Запускать/отключать охранные системы.

Габариты устройства небольшие , в конструкции предусмотрены функциональные клавиши. Используя их, можно легко запрограммировать прибор. Помимо этого, имеется жидкокристаллический дисплей, на котором отображается информация.

Режим управления можно активировать, нажав и удерживая кнопку «Р». Настройки сбрасываются кнопкой «Reset». Во время программирования можно установить дату, лимит - недельный срок. Реле времени может работать в ручном или автоматическом режиме. Современная промышленная автоматика, а также разные бытовые модули чаще всего оборудуются приборами, которые можно настроить при помощи потенциометров.

Передняя часть панели предполагает наличие одного или нескольких штоков потенциометра. Их можно регулировать при помощи лезвия отвертки и устанавливать в нужное положение. Вокруг штока имеется размеченная шкала. Подобные приборы широко применяются в конструкциях контроля вентиляционных и отопительных систем.

Приборы с механической шкалой

Одним из приборов, который имеет механическую шкалу, является бытовой таймер. Работает он от обычной розетки. Такой прибор позволяет управлять домашней техникой в определенном диапазоне времени. В нем установлено «розеточное» реле, которое ограничено суточным циклом срабатывания.

Для использования суточного таймера его нужно настроить:

  • Приподнять все элементы, которые располагаются по дисковой окружности.
  • Опустить все элементы, которые отвечают за настройку времени.
  • Прокручивая диск, установить его на текущий промежуток времени.

К примеру, если элементы опущены на шкале, отмеченной цифрами 9 и 14, то нагрузка активируется в 9 часов утра и будет выключена в 14:00. За сутки можно создать до 48 включений аппарата.

Кроме того, устройство имеет функционал, позволяющий активировать таймер во внепрограммном режиме.

Для этого нужно активировать кнопку, которая находится на боковой части корпуса. Если ее запустить, таймер включится в срочном режиме, даже если он был включен.

Активация механизма

Подключение устройства производится в строгом положении, предписанным техпаспортом. Обычно прибор устанавливается в вертикальном положении, если он не отклоняется от вертикали более чем на 10 градусов. Также необходимо придерживаться температурного режима: от -20 до +50 градусов по Цельсию.

Третьим параметром, который учитывается при установке устройства, является влажность воздуха. Допустимый уровень не должен быть больше 80%. При подключении необходимо отключить электрическую схему от питательного устройства. Схема, как сделать реле времени 220В своими руками:

Дополнительно на самом корпусе имеются обозначения, указывающие в какой последовательности подключать элементы. Обычно это выглядит подобным образом:

  1. Первым делом подключается линия напряжения на клеммы питания.
  2. Далее, идет соединение фазной линии с рубильником и входным контактом.
  3. Последним шагом является подключение выходного контакта к фазной линии.

В действительности, реле времени подсоединяется по классическому пути многих приборов, то есть идет соединение питания и активация нагрузки через соответствующие контакты, которые образуют группы, их бывает несколько. Все зависит от реле, которое может быть однофазным или трехфазным.

Схема для новичков

Будучи начинающим радиолюбителем, можно сделать реле времени своими руками на 12В. Работать такой механизм будет по самому простому принципу.

Схема подключения реле времени:

Однако и таким прибором можно будет включить нагрузку на определенное время. Но есть небольшая особенность - время нагрузки всегда будет одинаковым.

Кнопка под обозначением SB1 замыкается, происходит полное заряжение С1. Когда кнопка отпускается, часть С1 будет разряжаться через R1 и базу транзистора, который обозначен в схеме под указателем VT1.

Пока конденсатор разряжается, тока достаточно для поддержания открытого состояния транзистора VT1, а значит реле будет работать, затем отключится. Конечно, можно сделать своими руками реле времени на 2 часа - все зависит от емкости конденсатора С1.

Для обеспечения точных промежутков времени при выполнении различных действий с помощью электрооборудования применяются реле времени.

Они повсюду применяются в быту: электронный будильник, изменение режимов работы стиральной машины, микроволновой печи, вытяжные вентиляторы в туалете и ванной комнате, автоматический полив растений и т. п.

Достоинства таймеров

Из всех разновидностей наиболее распространены электронные устройства. Их преимущества:

  • малые размеры;
  • исключительно малые энергозатраты;
  • отсутствие подвижных частей за исключением механизма электромагнитного реле;
  • широкий диапазон временных выдержек;
  • независимость срока службы от количества рабочих циклов.

Реле времени на транзисторах

Обладая элементарными навыками электрика, можно изготовить электронное реле времени своими руками. Его монтируют в пластиковом корпусе, где размещаются блок питания, реле, плата и элементы регулирования.

Простейший таймер

Реле времени (схема ниже) производит подключение нагрузки к питанию на время 1-60 сек. Транзисторный ключ управляет электронным реле К1, который подключает потребитель к сети контактом К1.1.

В исходном состоянии переключатель S1 замыкает конденсатор С1 на сопротивление R2, который поддерживает его разряженным. Электромагнитный переключатель К1 при этом не работает, поскольку транзистор заперт. При подключении конденсатора к питающей сети (верхнее положение контакта S1) начинается его зарядка. Через базу протекает ток, который открывает транзистор и включается К1, замыкая цепь нагрузки. Напряжение питания на реле времени - 12 вольт.

В процессе зарядки конденсатора базовый ток постепенно уменьшается. Соответственно падает величина коллекторного тока, пока К1 своим отключением не разомкнет цепь нагрузки контактом К1.1.

Чтобы снова подключить нагрузку к сети на заданный период работы, схему следует снова перезапустить. Для этого переключатель устанавливается в нижнее положение "выключено", что приводит к разрядке конденсатора. Затем устройство снова включается с помощью S1 в течение заданного временного промежутка. Задержка регулируется с помощью установки резистора R1, а также может быть изменена, если конденсатор заменить на другой.

Принцип действия реле с применением конденсатора основан на его зарядке в течение времени, зависящего от произведения емкости на величину сопротивления электрической цепи.

Схема таймера на двух транзисторах

Нетрудно собрать реле времени своими руками на двух транзисторах. Оно начинает работать, если подать питание на конденсатор С1, после чего начнется его зарядка. При этом ток базы открывает транзистор VT1. Вслед за ним откроется VT2, и электромагнит замыкает контакт, подавая питание на светодиод. По его свечению будет видно, что сработало реле времени. Схема обеспечивает переключение нагрузки R4.

По мере того как конденсатор заряжается, эмиттерный ток постепенно снижается, пока транзистор не закроется. В результате реле отключится, и светодиод прекратит работу.

Повторный запуск устройства происходит, если нажать кнопку SB1, а затем ее отпустить. При этом конденсатор разрядится и процесс повторится.

Работа начинается, когда на реле времени 12 В подается питание. Для этого могут применяться автономные источники. При питании от сети к таймеру подключается блок питания, состоящий из трансформатора, выпрямителя и стабилизатора.

Реле времени 220в

Большинство электронных схем работают на малом напряжении с гальванической развязкой от сети, но при этом могут коммутировать значительные нагрузки.

Временная задержка может производиться от реле времени 220В. Всем известны электромеханические устройства с задержкой выключения старых стиральных машин. Достаточно было повернуть ручку таймера, и устройство включало двигатель на заданное время.

На смену электромеханическим таймерам пришли электронные устройства, которые также применяются для временного освещения в туалете, на лестничной площадке, в фотоувеличителе и т. п. При этом часто используются бесконтактные переключатели на тиристорах, где схема работает от сети 220 В.

Питание производится через диодный мост с допустимым током 1 А и более. Когда контакт выключателя S1 замыкается, в процессе зарядки конденсатора С1 открывается тиристор VS1 и загорается лампа L1. Она служит нагрузкой. После полной зарядки тиристор закроется. Это будет видно по отключению лампы.

Время горения лампы составляет несколько секунд. Его можно менять, установив конденсатор С1 с другим номиналом или подключив к диоду D5 переменный резистор на 1 кОм.

Реле времени на микросхемах

Транзисторные схемы таймеров имеют много недостатков: сложность определения времени задержки, необходимость разрядки конденсатора перед следующим пуском, малые интервалы срабатывания. Микросхема NE555, получившая название "интегральный таймер", давно завоевала популярность. Ее применяют в промышленности, но можно увидеть множество схем, по которым делают реле времени своими руками.

Временная выдержка задается сопротивлениями R2, R4 и конденсатором С1. Контакт подключения нагрузки К1.1 замыкается при нажатии на кнопку SB1, а затем он самостоятельно размыкается после задержки, продолжительность которой определяется из формулы: t и = 1.1R2∙R4∙C1.

При повторном нажатии на кнопку процесс повторяется.

Во многих бытовых приборах применяются микросхемы с реле времени. Инструкция для пользования - это необходимый атрибут правильной эксплуатации. Она также составляется для таймеров, созданных своими руками. От этого зависит их надежность и долговечность.

Схема работает от простейшего блока питания на 12 В из трансформатора, диодного моста и конденсатора. Ток потребления составляет 50 мА, а реле коммутирует нагрузку до 10 А. Регулируемую задержку можно сделать от 3 до 150 с.

Заключение

В бытовых целях можно легко собрать реле времени своими руками. Электронные схемы хорошо работают на транзисторах и микросхемах. Можно установить бесконтактный таймер на тиристорах. Его можно включать без гальванической развязки от действующей сети.