Дистанционное управление шторами с пульта давно перестало быть роскошью. Чем хороши электрокарнизы для штор: принцип работы Рулонная электро штора своими руками

Дистанционное управление шторами с пульта давно перестало быть роскошью. Чем хороши электрокарнизы для штор: принцип работы Рулонная электро штора своими руками
Дистанционное управление шторами с пульта давно перестало быть роскошью. Чем хороши электрокарнизы для штор: принцип работы Рулонная электро штора своими руками

Однажды, после тяжелого рабочего дня, я пришел домой и понял, что хочу отдохнуть, а не ходить и закрывать шторы. Хочется увидеть их закрытыми вечером и открытыми утром, при этом не выделывать танцы перед окном. Погуглив разные решения, было принято решение сделать все самому.

По многочисленным просьбам, выкладываю все свои наработки по переделке обычных рулонных штор в автоматизированные с удаленным управлением. Осторожно, много фотографий!

Для начала про рулонные шторы:

  • Плюсы: рулонные шторы визуально расширяют пространство, красивые и недорогие. Очень простой монтаж. Можно каждым окном управлять отдельно. Высвобождается место на подоконнике.
  • Сложности: вручную открывать 5 окон уже занимает долго времени. Открыть полностью угловое окно мешает сам механизм (пример: механизм вверху балконной двери упирается в стену и не дает открыть проход полностью). Из-за этого необходимо вешать шторы с наружной стороны окна. Цена даже на китайские моторизированные шторы начинаются от 2000 рублей, умножаем на 5 и уже сразу же думаем, как сделать все подручными средствами.

Немного про задачи:

Необходимо добавить к обычным рулонным шторам из строительного магазина удаленное управление и подключить к умному дому на openSource платформе Home Assistant . И еще необходимо сохранить обычное управление за веревочку.

Выбор моторов:

Если все автоматизировать, то скорость не играет роли, поэтому можно применять двигатели с редуктором. Коллекторные двигатели дешевые, но не самая надежная вещь для ежедневного применения. Сервомашинки тоже имеют коллекторные двигатели и плюс не стабильные при постоянном вращении. Отличным вариантом выглядят шаговые двигатели. Бесшумные, можно контролировать положение, стоят копейки. В итоге, комплект из 5 двигателей 28BYJ-48 с драйвером ULN2003 обошелся мне в 10$

Про двигатель 28BYJ-48:

Были вопросы о мощности этого двигателя. Опасения что он будет слабым, не оправдались. Вернее так - если использовать полношаговый режим, то двигатель очень хилый, если использовать полушаговый, то вал уже голыми руками не остановить. Кому будет мало мощности, в интернете много статей как приподнять напряжение, превратить его в биполярный и прочие улучшения.

Про датчики:

Так как у нас осталось ручное управление, и мы не хотим впустую гонять двигатель, то необходимы датчики положения штор. Минимум необходим один датчик на одном конце, но лучше два. Можно использовать любой концевой, оптический и т.д., но я лично выбрал герконовый, т.к. приклеить неодимовый магнитик с другой стороны очень просто и работать должен стабильно и долговечно. Сами герконы я выбрал для эстетики уже в корпусе. Плюс предусмотрел настройку по расстоянию от вала. По высоте можно регулировать проставками.

Про конструкцию крепления:

Задача была спроектировать корпус максимально простой для изготовления на 3д принтере с минимальными доработками. Моделировал в Fusion 360. Комплектное крепление цепляется за верх окна, но такую конструкцию на FDM принтере будет трудно сделать с нужными требованиями по прочности, поэтому была придумана конструкция с одним винтом для регулировки.

Итого получилось три детали для 3д-печати. Ссылка для скачивания 3д-моделей .

Основная часть для двигателя, платы управления на ULM2003, креплением герконов, двигателей, лески для стабилизации штор, и регулировочного винта.

Крышка для закрытия всего этого безобразия. Зажим или по-другому крюк.

Сама конструкция штор содержит несколько пружин, которые работают как тормоз если тянуть за шторы(пружина затягивается) или отпускает если крутить за веревку.

При сборке надо сделать одну доработочку: кусачками сломать ободок, который прикрывает веревку, т.к. теперь у нас есть свой неподвижный ободок, который не дает выпасть веревочке.

Управление:

Управлять шаговым двигателем будет NodeMCU на ESP8266. Он выбран из-за дешевизны, наличия резервного канала wi-fi и на нем достаточно легко написать нужные скрипты. Если нужно больше чем две шторы или дополнительные датчики, то ножек микроконтроллера уже не хватит, можно посмотреть в сторону ESP32. (на фото esp32 не приведена, т.к. она в распределительной коробке)

Программная часть:

Среда разработки может быть любая. ESP32 может программироваться через Arduino IDE. Но я для себя выбрал Visual Studio Code из-за скорости, модульности и бесплатности. В этой среде можно разрабатывать почти под любые платформы (не только железо). Можно даже подключить IAR ARM.(но это уже совсем другая тема)

Задача программы простая:

Подключиться по Wi-fi
Подключиться к MQTT брокеру
Подписаться на топик
Управлять скоростью двух моторов
Следить за состоянием концевых датчиков
Отправлять брокеру текущие шаги

Исходники можно взять

Жалюзи с электроприводом можно сделать своими руками. Первоначально определяют размер шторы. Для этого потребуется замерить оконную раму либо створки. Длина жалюзи должна совпадать с параметрами рамы. Допускается увеличение этого показателя для штор (по сравнению с рамой) на 8-12 см. На припуски потребуется оставить 2 см. Ширина жалюзи должна равняться аналогичному показателю рамы.

Основные работы

Изготовление штор своими руками с электроприводом производится с помощью ткани, степлера, рулетки, уровня, электрической отвертки. Следующий этап предусматривает раскройку ткани. Потребуется 2 выкройки — для изнанки и для лицевой стороны. Отрезки соединяют изнанкой наружу и сшивают. Штора выворачивается. Полученный зазор зашивают и разглаживают. Специалисты рекомендуют использовать ткань одного цвета.

Виды приводного управления жалюзи.

Жалюзи крепят на деревянный брус, длина которого должна быть на 1 см меньше, чем ширина шторы. Для этого ткань расстилают на ровной поверхности (изнанкой вверх). Сверху делают отступ в 5 см. Затем укладывают готовый брус. Опора оборачивается тканью. Дерево и полотно фиксируют степлером. Чтобы рейка натягивала штору, потребуется сделать для нее кармашек. Край полотна заворачивают на 3 см. Брус продевают в этот кармашек.

Для поднятия/опускания жалюзи применяют электропривод. Его можно купить в готовом виде либо сделать своими руками. Последний метод предусматривает применение электрической отвертки, бит, удлинителя для бит. Первоначально производится разборка отвертки. Она питается от 3 аккумуляторных батарей с форматом А4. Батарейный отсек отсоединяют, провода питания удлиняют на 2-2,5 м. Электродвигатель и редуктор нуждаются в доработке. Связано это с тем, что основной электропривод потребуется установить в узком пространстве окна. В этом случае доработка устройства связана с укорочением его корпуса.

Вернуться к оглавлению

Правила выбора мотора

Устройство рулонных штор с электроприводом.

Привод легко соединяется со шторой своими руками. В соответствующем сальнике предусмотрен удлинитель фиксации бит. В торец корпуса намотки жалюзи устанавливают первый элемент. Предварительно снимают штатную заглушку. Производится эта процедура таким образом, чтобы сальник плотно зафиксировался в торце.

Устройство монтируют к строительной скобе, закрепленной к раме. Первоначально электропривод для штор фиксируют с помощью стяжек. Затем крепежные элементы заменяют скобами. Если двигатель установлен, монтируют жалюзи в горизонтальном положении.

Управлять работой конструкции можно с помощью реверсивного выключателя, расположенного на блоке питания.

Можно сделать жалюзи с электроприводом, представленным в виде мотора с редуктором. При выборе последнего агрегата учитывают скорость и усилие вращения вала. Специалисты рекомендуют покупать в этих целях моторы со скоростью вращения вала более 15 об/мин. Напряжение реверсивного агрегата не должно быть меньше 12 Вт.

Сегодня автоматизация умного дома затрагивает практически все бытовые процессы. Это касается и управления карнизами, которое отлично сочетается с системой мультирум. Электропривод для карниза – главный элемент автоматизации штор, позволяющий на расстоянии управлять уровнем естественного освещения в доме. Главный плюс такой системы в том, что ее можно изготовить самостоятельно. Что для этого потребуется, как это сделать?

Принцип работы электрокарниза

Рассматриваемые системы отличаются достаточно простым устройством и принципом работы. Комплектация представлена электроприводом и алюминиевым профилем, который выполняет роль опорной конструкции для штор. Внутри профиля располагается прочный стальной трос, соединенный с подвижной кареткой. Электромотор двигает каретку, за которой следует трос. На тросе располагаются крепления, к которым подвешиваются шторы.

Некоторые модели оборудованы встроенным таймером. Он позволяет заранее задавать сценарии, по которым система будет в автоматизированном режиме регулировать уровень естественной освещенности внутри комнат. Более продвинутые решения имеют встроенные датчики освещения. Они работают в автоматическом режиме, изменяя положение занавесок в зависимости от того, насколько светло или темно в данный момент на улице.

Виды карнизов по конструкции

Шторы для умного дома с электроприводом классифицируются по конструкционным особенностям на три вида:

    Раздвижные. Наиболее часто встречающийся вид. Такие конструкции осуществляют передвижение штор в горизонтальной плоскости по обе стороны от окна. Эти системы предпочтительны в случаях, когда надо автоматизировать управление тяжелыми шторами, так как рассчитаны они на весьма большие нагрузки.

    Подъемные. Такие системы предназначаются для вертикального передвижения штор снизу-вверх. Они могут не только скручивать полотно в рулон, но и передвигать его на заданный пользователем уровень.

    Панельные. Это достаточно редкий тип системы, которая заточена под работу со шторами-панелями. Прежде всего к ним относятся японские полотна. Электроприводы для работы с панелями обладают комбинированным управлением – автоматическое и механическое. Они более дорогие, чем иные виды.

Для домашнего использования на широких и высоких окнах лучше выбирать раздвижные системы. Если окна узкие и высокие, или просто небольшие, целесообразнее обратить внимание на варианты подъемного типа.

Разновидности по управлению

Управление электрическими карнизами может выполняться по одной или сразу нескольким доступным схемам:

    Стационарный контроль. Наиболее простой способ регулировки положения полотен, подвешенных на электрокарниз. В этом случае на стене монтируется небольшая панель, на которой расположены кнопки или сенсорный экран с простым интерфейсом. Он содержит несколько переключателей, изменяющих направление движения полотна. Функция программирования в большинстве таких пультов отсутствует.

    Дистанционный контроль. Более современный, удобный и универсальный способ контроля. Регулировка положения полотна осуществляется с пульта дистанционной связи. Также в эту категорию можно отнести автоматический контроль на основании показаний датчиков освещения и других раздражителей. Такие системы удобны для домашнего использования – не нужно монтировать панель в каждой комнате дома.

    Контроль через умный дом. Многие готовые решения поддерживают сопряжение с умным домом. Это открывает возможность по заданию многочисленных сценариев, а также по контролю положения штор на больших расстояниях. Управлять карнизом в этом случае можно с мобильных устройств, а также через Интернет с персонального компьютера или ноутбука. Пожалуй, это самый гибкий способ управления.

Многие современные решения поддерживают и дистанционное управления, и подключение к умному дому.

Преимущества и недостатки систем

Карнизы с электрическим двигателем – отличная современная альтернатива классическим карнизам, которые не так удобны в использовании. Рассматриваемая технология пользуется популярностью из-за множества плюсов:

    Универсальность. Можно подогнать систему под любой стиль интерьера – дома, в офисе, театре и т.д.

    Эстетичность. Сегодня доступно множество дизайнерских решений электрокарнизов на любой вкус.

    Удобство. Изменение положения штор – дело пары секунд. Если есть пульт, даже не нужно вставать.

    Комфорт. Даже ребенок справится с передвижением тяжелых штор – достаточно нажать нужную кнопку.

    Минимум шума. Электропривод не издает никаких звуков, полотна передвигаются максимально плавно.

Недостатков у рассматриваемых систем всего два. Первый – достаточно высокая стоимость готовых решений. Второй недостаток – сложный ремонт, который понадобится в случае выхода системы из строя. Особенно дорого выходит восстановление или замена электрического привода, а также модуля беспроводного управления.


Самостоятельное изготовление системы

Прежде, чем сделать жалюзи с электроприводом для дома своими руками, нужно определиться с мощностью мотора. Сделать это просто. Если масса ваших штор не больше 50 кг, достаточно мощности мотора в 75 Вт. Если полотна тяжелее, лучше подобрать мотор на 100 Вт. Чем больше мощность, тем быстрее раздвигается полотно.

Лучший выбор для самостоятельного изготовления электропривода – электрический мотор стеклоподъемника, который можно найти в двери автомобиля. Такой мотор идеален, так как характер его работы такой же, как и у готовых приводов – это возвратно-поступательное движение. Также для того, чтобы изготовить жалюзи с электроприводом своими руками, потребуется карниз и трос с креплениями для используемого вами полотна.

Процесс сборки и монтажа

Вам необходимо собрать систему в соответствии со схемой механической части привода, приведенной ниже:


Слева устанавливается привод стеклоподъемника, а справа – подвижный блок с колесом. Трос, на который подвешиваются шторы, натягивается между блоком и колесиком электропривода. Схема силовой части для питания электрического двигателя собирается по указанной ниже схеме. Для этого нужны навыки пайки.

После сборки силовой части можно перейти к изготовлению силовой части. Ее схема представлена на схеме:

Можно заметить, что в схему входит датчик освещения, роль которого берет на себя фоторезистор. Его нужно прикрепить на окно таким образом, чтобы он смотрел на улицу. Управление системы осуществляется при помощи пульта дистанционного управления. Возможен автоматический и ручной контроль работы привода.

Готовые системы электрокарнизов

Если самостоятельное изготовление электропривода для домашних штор – это не для вас, вы можете купить уже готовое к использованию решение. Сегодня в продаже можно найти большой выбор автоматизированных схем:

    Astra ME. Такой вариант получил широкое распространение в отелях, частных апартаментах и офисах, а также в местах, где шторы подвешены на большой высоте. Движение штор осуществляется со скоростью до 12 метров в минуту, потребление мощности – 65 Ватт. Управлять устройством можно по радиоканалу. Есть возможность подключения оборудования к системе автоматизации умного дома, что очень удобно.

    Somfy. Электроприводы от этого бренда имеют массу удобных функций и сценариев. Они поддерживают плавное и равномерное движение штор. Привод при работе не издает шум, при этом выглядит весьма стильно, как и элементы управления. Можно подключить устройство к системе умного дома, после чего появится возможность регулировки уровня естественного освещения на большом расстоянии от жилья.

Среди систем управления электрокарнизами большой популярностью пользуются радиомодули Herzborg, NOVO. На первый пульт можно одновременно подключить до 99 двигателей, работает он на частоте 868 МГц. На второй можно настроить работу до 15 моторов сразу, управление осуществляется с использованием частоты 433 МГц.

Вывод

Сделать автоматические шторы на окна своими руками не так просто, и для этого потребуются определенные навыки пайки и сборки электронных устройств. Если для вас это слишком сложная задача, или вы не хотите тратить на это время, рассмотрите готовые решения. Хоть это и выйдет дороже, вы сэкономите массу времени.

Люди занимающиеся самодельным конструированием наверняка стараются сделать что-либо полезное для быта. В идеале наибольшее удовлетворение вызовут полезные конструкции которых просто нет и купить их невозможно. Сделать такую полезную вещь все сложнее и сложнее. Но можно пользу получить и от самодельных конструкций, которые выполняют функционал покупных устройств, но обходятся по цене значительно дешевле. Предлагаю способ изготовления устройства по цене значительно ниже готового устройства в магазине.

Рулонные шторы благодаря удобству и практичности проникают в наш быт. Купленная в свое время штора очень хорошо защищала комнату от солнечного света. Но кроме дешевых штор в продаже были и шторы с механическим приводом по цене дороже простых от 8 до 15 раз. Построить штору с мотором удалось купив деталей на 300 рублей (2009 год).

Как сделать механизм для шторы своими руками

1. В качестве привода шторы применена электрическая отвертка купленная на распродаже за 250 рублей. В комплект отвертки входил набор не совсем плохих бит, удлинители для бит и зарядное устройство. Один удлинитель бит потребуется для устройства.

2. Разбираем отвертку. Отвертка питается от 3 аккумуляторов формата АА непонятной емкости.

3. Батарейный отсек отсоединяем и удлиняем провода питания от него на длину 2-2.5метра.

4. Блок электродвигателя и редуктора в моем случае пришлось доработать, так как электродвигатель необходимо было разместить в узком пространстве оконного проема. Доработка заключалась в укорочении корпуса.

5. Узел соединения привода со шторой понятен из фотографии. В кабельном сальнике подходящего диаметра закреплен удлинитель крепления бит. Сам сальник устанавливается в торец корпуса намотки шторы вместо штатной заглушки. Сальник должен плотно фиксироваться в торце.

6. Привод крепится к закрепленной в оконном проеме строительной скобе. Первоначально моторный отсек крепился при помощи кабельных стяжек. В дальнейшем стяжки были заменены скобами из строительной ленты.

  • Электроника для начинающих
  • В этой статье я расскажу о конструкции автоматического привода штор, установленного у меня на балконе. Там у нас растут цветы, которым вреден прямой солнечный свет. Кроме того, летом, если окна балкона закрыты, при прямом солнечном свете воздух на балконе быстро перегревается. Однако когда прямого света нет, шторы желательно открыть - тень тоже не способствует росту цветов. Поэтому, для поддержания на балконе приемлемой освещенности, я автоматизировал работу штор.

    Механика

    Шторы изначально уже были на балконе. Их две, обе подвешены на металлическом тросике, протянутом под потолком от одной стены балкона до другой. Понятно, что передвигать нужно сразу обе шторы, при этом из-за трения штор об тросик (он достаточно шершавый) требуемая сила должна быть достаточно велика. Кроме того, иногда на пути шторы могут встречаться препятствия, например, приоткрытое окно балкона, что еще больше увеличивает требования к силе.
    Таким образом, привод должен быть достаточно мощным и надежным - на балконе часто бывает повышенная влажность, возможна достаточно большая разница температур зимой и летом. Поэтому основой привода я сделал автомобильный привод стеклоподъемника. Он обладает достаточной мощностью, способен выдавать большой крутящий момент (в него встроен червячный редуктор) и очень надежен.

    Схема механической части привода показана ниже:


    Подробнее о конструкции. На вале привода стеклоподъемника (слева на схеме) закрепляется пластиковый ролик с проточкой, на который намотан виток веревки. Привод закрепляется на одной из стен балкона. На противоположной стене крепится такой же ролик, через который также пробрасывается веревка.
    После этого веревка натягивается, так что трения веревки на ролике привода хватает для перемещения штор. Противоположные концы каждой шторы крепятся к веревке так, чтобы при вращении мотора штора раздвигалась или сдвигалась.

    Для проверки работы привода я сделал его уменьшенную модель. Привод стеклоподъемника и независимый ролик закрепил на доске, натянул между ними веревку, после чего можно было проверять работу электроники и измерять силу, развиваемую приводом.

    Фотография самого привода на макете:

    Как видно из фотографии, к приводу стеклоподъемника прикреплена достаточно крупная тонкая пластина (я использовал текстолит). К ней крепится металлический уголок с двумя отверстиями, через которые пропущена веревка. Он нужен для того, чтобы виток веревки на ролике не путался, для этого отверстия в уголке сделаны на разной высоте относительно пластины.
    Правее уголка - концевые выключатели, нужные для остановки штор к крайних положениях. Для того, чтобы обозначить эти положения, на веревку надеваются две пластиковые трубочки (на фотографии рядом с нижним выключателем видна только одна из них). Трубочки располагаются так, что при достижении шторой крайнего положения одна их них нажимает на выключатель, при этом для надежного нажатия рядом с каждым из выключателей крепится металлическая пластинка, которая прижимает трубочку к выключателю.
    Три металлические стойки, прикрепленные к пластине, нужны для крепления крышки привода.
    Оба ролика для веревки сделаны из колес для мебели. Используя дрель и напильник, в каждом из них нужно проточить канавку, в канавке ролика привода должны укладываться два витка веревки. Ролик привода крепится на валу за счет натяжения, при этом отверстие в нем пришлось расточить до квадратного, так как вал привода квадратный.
    Привод крепится к стене балкона при помощи подходящих мебельных уголков (один из них виден на фотографии слева). В приводе стеклоподъемника достаточно крепежных отверстий, так что проблем с креплением не возникает.

    Вид привода, уже прикрепленного к стене и закрытого крышкой:

    Для того, чтобы натягивать веревку, используется специальный винт с гайкой, к которому крепятся концы веревки:


    Также к нему прикреплен конец одной из штор.

    Электроника

    Вся электроника у меня разбита на две части - силовую и управляющую. Главная задача силовой части - обеспечение питания двигателя привода. Привод стеклоподъемника может потреблять очень большой ток. Для уменьшения этого тока я уменьшил напряжение питания привода до 5 вольт, но даже при этом максимальный ток, потребляемый двигателем, может доходить до 3А. Чтобы обеспечить такой ток, я использовал блок питания от принтера, способный выдавать напряжение около 30В и ток до 0.7А, а так же DC-DC преобразователь до 5В. За счет понижения напряжения DC-DC вполне способен выдать нужный ток.
    Управление питанием двигателя производится при помощи мощного реле, предназначенного для изменения полярности сигнала, и MOSFET, управляющего подачей напряжения на двигатель. Благодаря использованию MOSFET можно регулировать скорость вращения двигателя, но в данный момент эта возможность не используется.
    Также на силовой части установлены стабилизаторы, предназначенные для питания управляющей электроники и цепь контроля питания двигателя. Стабилизаторы питаются от более низковольтной цепи блока питания, напряжение там не превышает 12В.

    Управляющая электроника представлена микроконтроллером STM8S. Контроллер выполняет достаточно много функций - измерение освещенности, принятие решения о запуске привода, контроль за положением штор по концевым выключателем, управление питанием привода, управление приводом в ручном режиме - по командам пульта ДУ. Кроме того, к контроллеру подключен радиомодуль на NRF24L01 и шина 1-Wire, по которой подключены три датчика температуры. При помощи радиомодуля можно управлять приводом и считывать значения температуры в разных точках балкона и на улице, однако в данный момент второй радиомодуль подключен только к макетной плате, так что далее этот функционал я рассматривать не буду.

    Используемый блок питания от принтера имеет вход для перевода его в состояние Stand-by. Его я тоже использую, благодаря чему уменьшается потребление энергии конструкцией. В программе учитывается, что блок питания переходит в рабочий режим с определенной задержкой, а после 30 секунд бездействия привода блок питания опять переходит в режим Stand-by.

    Индикация работы привода - при помощи трехцветного светодиода (используются только синий и красный диоды). Синий загорается при подаче напряжения на двигатель, красный начинает периодически мигать при наличии ошибок в работе привода. Число вспышек позволяет определить номер ошибки.
    Для звуковой сигнализации некоторых событий (например, при подаче команды на закрытие уже закрытых штор) используется сам двигатель привода. На него подается ШИМ сигнал с маленьким коэффициентом заполнения, в результате чего двигатель достаточно громко пищит.

    В качестве датчика освещенности используется фоторезистор, прикрепленный присоской к окну. Так как присоска может отпасть от окна, рядом с фоторезистором расположена маленькая кнопка. Пока присоска держится на окне, кнопка прижата к окну. Если присоска отпадет, автоматическая работа привода прекращается и начинает мигать красный диод. Если датчик не подключен к разъему, то это тоже обнаруживается контроллером.
    Вид датчика освещенности:

    Так как освещенность датчика может резко изменяться - из-за различных вспышек на улице, переменной облачности, то данные от датчика приходится фильтровать. У меня реализован следующий алгоритм обработки: данные от датчика оцифровываются с частотой 10Гц, и записываются в массив. Раз в секунду значение этого массива усредняется (в первую очередь это нужно для фильтрации шумов и вспышек). Далее полученные значения добавляются в другой массив размерностью 600 элементов, после достижения конца массива запись начинается с его начала. Также каждую секунду производится анализ этого массива - контроллер подсчитывает, какой процент элементов массива меньше определенного порога (с ростом освещенности напряжение на выходе фотодатчика падает). Если значения более 66% элементов меньше заданного порога - то считается, что освещенность достаточно велика, и шторы можно закрывать. Таким образом проводится фильтрация периодических изменений освещенности. При этом на частоту работы привода тоже наложено ограничение - в автоматическом режиме мотор включается не чаще раза в десять минут.

    Как я упоминал выше, имеется возможность управлять шторами с пульта ДУ. При помощи пульта можно полностью открыть и закрыть шторы, частично открыть их, запустить привод по мгновенному значению освещенности.При управлении с пульта ограничений на частоту работы привода нет.
    Также есть возможность программно перезагрузить контроллер.
    При передвижении штор контроллер следит за состоянием концевых выключателей. Если после начала движения соответствующий выключатель не сработает в течении 20 секунд, работа мотора прекращается. Чтобы продолжить работу привода после устранения неисправности, как раз и нужно перезагрузить контроллер.

    Вся электроника установлена в стандартный пластмассовый корпус.