Диагностика оборудования насосных и компрессорных станций. Безопасная эксплуатация магистральных газопроводов на основе внутритрубной диагностики

Диагностика оборудования насосных и компрессорных станций. Безопасная эксплуатация магистральных газопроводов на основе внутритрубной диагностики
Читайте также:
  1. CASE -технологии, как новые средства для проектирования ИС. CASE - пакет фирмы PLATINUM, его состав и назначение. Критерии оценки и выбора CASE - средств.
  2. I. ОБЩИЕ ТРЕБОВАНИЯ К ОФОРМЛЕНИЮ КУРСОВЫХ, ДИПЛОМНЫХ, НАУЧНЫХ РАБОТ
  3. I. Современные требования к проведению коррекционного занятия.
  4. VI. Требования к освещению на рабочих местах, оборудованных ПЭВМ
  5. А) Качество следует определять как соответствие требованиям, а не как полезную пригодность.
  6. Актиномицеты. Таксономия. Характеристика. Мик­робиологическая диагностика. Лечение.
  7. Алгоритм – это понятное и точное предписание исполнителю выполнить конечную последовательность команд, приводящую от исходных данных к искомому результату.
  8. Анализ показателей себестоимости: ее виды, цели, задачи, последовательность и методика анализа. Анализ затрат на 1 руб. продукции.

Для обследования трубопроводов большой протяженности без выведения их эксплуатации применяются внутритрубные снаряды, осуществляющие профилеметрию и дефектоскопию. Внутритрубная дефектоскопия осуществляется путем сканирования внутренней поверхности трубопровода внутритрубными приборами-дефектоскопами. Дефектоскопы вводятся через специально сооружаемые камеры ввода-вывода, перемещаются по трубопроводу потоком перекачиваемого продукта и проводят сплошной контроль трубопровода (100%).

Внутритрубные снаряды представляют собой механическое транспортное устройство с размещенными на нем датчиками, системами сбора, обработки и хранения информации, источником питания.

Последовательность работ по внутритрубной диагностике:

Пропуск скребка-калибра (типа СКК) для определения минимального проходного сечения трубопровода перед пропуском профилемера;

Пропуск снаряда-шаблона (типа СНШ) для участков первичного обследования, имеющих подкладные кольца, с целью предупреждения застревания и повреждения профилемера деформированными подкладными кольцами и измерения самого минимального внутреннего сечения трубопровода на данном участке;

Пропуск профилемера для контроля проходного сечения трубопровода с целью предупреждения застревания и повреждения дефектоскопа и определения вмятин и гофр в трубопроводах – одноканальные профилемеры типа КЛП, ПРМ; многоканальные профилемеры с навигационной системой предназначены для обследования трубопроводов с целью сбора информации о поперечном сечении трубопроводов, дефектах геометрии его стенок и их координатах, а также о вертикальном и горизонтальном профиле залегания трубопроводов (типа ПРН);

Пропуск очистных скребков для очистки внутренней поверхности трубопровода от асфальтенопарафинистых веществ, удаления посторонних предметов и продуктов коррозии (типа СКР4);

Пропуск дефектоскопа.

Для проведения внутритрубной диагностики магистральный трубопровод должен отвечать определенным требованиям:

Все соединительные элементы и запорная арматура участка трубопровода должны быть равнопроходными с трубопроводом;

Каждый участок диагностируемого магистрального трубопровода (в том числе лупинги резервные нитки подводных переходов) должен быть оборудован камерами пуска, приема и очистки ВИП.



Используя внутритрубные снаряды, реализуется 4-х уровневая система диагностирования. Определяются следующие виды дефектов:

Дефекты геометрии трубопровода (вмятины, гофры, овальности поперечного сечения), приводящих к уменьшению проходного сечения;

Дефекты потери металла, уменьшающие толщину стенки трубопровода (коррозионные язвы, царапины, вырывы металла и т.п.), расслоения включения;

Поперечные трещины в теле трубы, поперечные трещины и трещиноподобные дефекты в кольцевых сварных швах;

Продольные трещины в теле трубы, продольные трещины и трещиноподобные дефекты в продольных сварных швах.

6. Профилеметрия. Основные элементы профилемера, их назначение .

Для обнаружения дефектов геометрии трубопровода – вмятин, гофр, овальностей поперечного сечения используется электронномеханический способ измерений, применяемый в приборах – внутритрубных профилемерах. Профилемеры оборудованы множеством щупов, которые касаются внутренней поверхности трубы и отслеживают ее геометрию. Перемещения всех щупов преобразуются в электрический сигнал, который после обработки регистрируется в запоминающем устройстве.



Минимальное проходное сечение трубопроводы, необходимое для пропуска профилемера – 70%.

Минимальный радиус отвода, преодолеваемый прибором (цельнотянутые колена) 1,5Dн при повороте на 90º.

Профилемер перемещается по трубопроводу с потоком перекачиваемой среды. При перемещении происходит сбор информации о состоянии внутреннего профиля стенок трубопровода, а также параметров движения.

Внутритрубный профилемер состоит из двух секций - стальных герметичных корпусов, связанных между собой карданным соединением. В передней и задней части первой секции установлены манжеты- для центрирования и приведения в движение прибора в трубопроводе. Коническая манжета, установленная на передней секции предотвращает застревание прибора в трубах,. В носовой части первой секции установлен бампер, под решеткой которого находится антенна приемопередатчика в защитном кожухе, а на задней части, на подпружиненных рычагах, размещены одометрические колеса, предназначенные для измерения пройденного расстояния.

1, 5 – передний и задний бамперы, 2 – коническая манжета; 3 – одометры; 4 – блок потенциометров; 6 – спайдер; 7 – карданный узел с измерителем поворота; 8 – манжеты; 9 – маркерный приемопередатчик.

В носовой части первой секции установлен бампер, под которым находится антенна приемопередатчика в защитном кожухе.Приемопередатчики и наземные приборы сопровождения служат для контроля за движением снаряда. Приборы сопровождения - локаторы и маркерные передатчики. Приёмопередатчики инспекционных снарядов генерируют низкочастотные электромагнитные сигналы, которые улавливаются антенной локаторного приемника на поверхности. Маркерные передатчики, сигналы которых улавливаются приемниками снарядов, необходимы для привязки диагностической информации к конкретным (контрольным) точкам трассы нефтепровода и для поправки одометрической информации о пройденном расстоянии.

На второй секции установлены манжеты и измерительная система, состоящая из множества рычагов с колесами (так называемый «спайдер») для измерения проходного сечения и других геометрических особенностей трубы. Колеса спайдера прижимаются к внутренней поверхности трубы и при движении профилемера Это движение передается на движок потенциометра, что вызывает изменение сигнала. Он преобразуется в цифровую форму и записывается в память профилемера.

За один прогон прибора может быть обследован участок трубопровода для ной от 300 до 350 км.

В запоминающем устройстве профилемера идет одновременная регистрация и хранение пяти параметров:

1. данных спайдера (вмятины, гофры);

2. угла поворота (ориентация дефекта по периметру трубы);

3. сигналов одометра (дистанция в метрах от камеры пуска);

4. маркерных передатчиков (для поправки одометрической информации);

5. временные отметки (дата и время обнаружения дефекта).

Чувствительность измерительной системы прибора - ± 2 мм.

Точность измерения глубины вмятин на прямых участках – (0,4 – 0,6)% относительно внешнего диаметра трубы – минимальный размер 5,0 мм.

Точность определения профилемером месторасположения зафиксированных дефектов, при условии использования одометра, маркеров и информации о поперечных сварных швах, составляет 0,3 м.

Профилемеры также используют для оценки качества строительно-монтажных работ до введения нефтепроводов в эксплуатацию. Пропуск профилемера производится по сформированным в протяженные участки трубопроводам, уложенные в траншеи и засыпанные грунтом. Трубопровод при этом оборудуют временными или постоянными камерами пуска и приема средств очистки и диагностики.

Внутритрубная профилеметрия на стадии строительно-монтажных работ осуществляется на переходах через водные преграды вне зависимости от их протяженности и на участках линейной части протяженностью от 1 км до 40 км. Контроль геометрических параметров участков протяженностью менее 1 км производит служба технадзора после укладки трубопроводов в траншею перед его засыпкой.

Ни один из современных способов внутритрубной диагностики трубопроводов с применением интеллектуальных поршней, использующих магнитные и ультразвуковые методы обследования, не позволяет выявить за один прогон снаряда 100% дефектов. Объясняется это, прежде всего тем, что каждый из применяемых методов имеет те или иные ограничения по выявлению дефектов определённого типа. В частности, серьёзным недостатком ультразвукового метода обследования является необходимость наличия контактной жидкости или геля, что делает его практически неприемлемым для диагностирования газопроводов.

Одним из методов, лишённых такого недостатка является метод электромагнитно-акустического преобразования (ЭМАП).

Принцип действия ЭМАП способа заключается в трансформации электромагнитных волн в упругие акустические. Как и в контактных ультразвуковых методах контроля, при дефектоскопии с применением ЭМАП используют преимущественно два способа генерации и регистрации ультразвуковой волны - импульсный и резонансный. Для реализации импульсного метода, наиболее часто применяемого для целей диагностики, в основном применяют те же электронные блоки, что и в традиционных ультразвуковых приборах, в которых возбуждение и приём ультразвука осуществляется с помощью пьезопреобразователей. Различие заключается в том, что вместо пьезоэлемента используется катушка индуктивности и имеется устройство для возбуждения поляризующего магнитного поля. В результате взаимодействия силы Лоренца и магнитострикции (магнитострикция - явление изменения формы и размеров тела при намагничивании; характерна для ферромагнитных веществ и измеряется относительной величиной удлинения ферромагнетика при намагничивании) с металлической поверхностью возникает акустическая волна, распространяющаяся в стенке трубы. В данном случае обследуемый материал сам является преобразователем.

Считается, что для уверенной работы ЭМА дефектоскопа необходимы магнитные поля с напряжённостью порядка 106 А/м. Современные дефектоскопы с использованием в конструкции разрезного магнитопровода с контролируемым прижимом постоянных магнитов к внутренней стенке трубы позволяют создать напряжённость магнитного поля в области действия ЭМА преобразователей (ЭМАП) до 30 кА/м.

Трещины и коррозионное растрескивание нарушают направленную ультразвуковую волну, что вызывает отражённый эхо-сигнал. На основе анализа отражённого эхо-сигнала делаются выводы о состоянии стенки трубы.

Таким образом одним из главных достоинств дефектоскопа с использованием ЭМАП является его уникальная способность по выявлению дефектов, обусловленных взаимодействием металла в напряжённым состоянии и коррозионной среды - стресс-коррозионного растрескивания, а также растрескивания вследствие водородного насыщения.

Следует отметить, что стресс-коррозионные поражения характерны для газопроводов высокого давления и являются крайне опасными дефектами, выявление и локализация которых представляет собой очень сложную задачу.

Побочным эффектом разработки внутритрубных инспекционных снарядов с использованием ЭМАП оказалась их способность выявлять состояние изоляционного покрытия. При этом по характеру зарегистрированных сигналов можно разделить состояние изоляционного покрытия трубопровода на категории:

  • отслоение без нарушения целостности;
  • нарушение целостности (отсутствие) изоляционного покрытия;

что очень важно при реализации программы переизоляции трубопроводов, находящихся в эксплуатации длительные сроки.

Технические возможности наиболее передовых компаний, занимающихся разработками внутритрубных инспекционных снарядов, позволяют оснастить дефектоскопы инерциальными измерительными системами на базе оптоволоконных гироскопов. Указанная система выполняет картографирование трубопровода, т.е. определяет его пространственное положение в координатах DGPS. В дальнейшем, при обработке данных обследования, для каждого выявленного дефекта определяются координаты DGPS, которые заносятся в общую электронную базу данных обследования, которая передаётся оператору трубопровода.

Оперируя базой данных обследования, оператор трубопровода может самостоятельно разработать программу ремонта. При этом, если ранее, когда исчерпывающая информация о состоянии изоляции трубопроводов была недоступна операторам трубопроводов, т.е. о её состоянии судили по косвенным признакам (результаты дефектоскопии на потерю металла, выборочные шурфовки, обследование состояния системы ЭХЗ и т.п.), то при появлении на внутритрубном диагностическом рынке технологии ЭМАП отпадает необходимость в глобальной переизоляции трубопроводов. Что позволяет операторам трубопроводов экономить колоссальные средства. А если учесть, что данный вид инспекционных снарядов даёт дополнительную информацию по трещиноподобным дефектам, экономический эффект от их применения оказывается ещё больше.

Инспекционный снаряд с использованием ЭМАП состоит из следующих системных компонентов:

  • батареи;
  • устройства записи и хранения информации;
  • блока определения трещин;
  • блока определения отслоения изоляции;
  • блока одометра;
  • блока контроля скорости (опция)

Полевые испытания снарядов ЭМАП подтверждают, что прибор с высокой точностью определяет плоские трещины и различные степени нарушения изоляции:




Изоляция, нанесённая в полевых условиях, и соответствующие данные обследования

К основным преимуществам снаряда ЭМАП можно отнести следующие:

  • сенсоры не требуют контактной жидкости, что позволяет использовать снаряд для обследования как жидкостных, так и газовых трубопроводов;
  • на сигналы ЭМАП не оказывает влияния среда, вследствие чего достигается высокая точность измерений;
  • особые возможности обнаружения стресс-коррозионного растрескивания; колоний трещин и различных видов отдельных трещин (сетка трещин, внешние продольные трещины на границе сварного шва, усталостные трещины), а также трещины в продольных швах или в зоне, примыкающей к ним;
  • это единственный внутритрубный инспекционный снаряд, определяющий наружное отслоение изоляции;
  • возможность комбинирования с другими инспекционными технологиями для создания высокоэффективного инспекционного снаряда; например, возможна комбинация с блоком картографирования и блоком контроля скорости (скорость снаряда до 5 м/с при скорости потока перекачиваемой среды до 12 м/с - не уменьшается пропускная способность трубопровода).

Отправить заявку на эту услугу

Нами очищены и обследованы внутритрубными дефектоскопами более 3800 километров трубопроводов диаметром от 159 мм до 1420 мм.

Цель услуги:

1. Обследование технического состояния трубопровода.

2. Расчеты на прочность (максимального разрешенного давления) и долговечность (остаточного ресурса) по результатам обследования.

3. Экспертиза промышленной безопасности. Лицензия № ДЭ-00-013475.

Этапы технологии внутритрубной диагностики:

1. Подготовительные работы - определение (по данным опросного листа) и обеспечение контролепригодности обследуемого трубопровода.

2. Очистка внутренней полости трубопровода от инородных предметов, окалины, остатков электродов, асфальтосмолистых, парафиновых и пирофорных отложений.

3. Калибровка трубопровода - определение минимального проходного сечения трубопровода и обеспечение 70% проходимости от наружного диаметра (т.е. устранение всех дефектов геометрии, превышающих 30% от наружного диаметра).

4. Обследование трубопровода профилемером - выявление дефктов геометрии трубопровода (вмятин, гофр, овальности) и изерение радиуса поворотов. Обеспечение проходимости трубопровода в 85% от от наружного диаметра (устранение всех дефектов геометрии, превышающих 15% от наружного диаметра) и минимального радиуса поворота трубопровода, равного 1,5Dн или 3Dн (Rпов. должно быть более или равно 1,5Dн или 3Dн в зависимости от применяемого после пофилеметрии дефектоскопа).

5. Обследование трубопровода внутритрубными магнитными (MFL и TFI) и/или ультразвуковыми дефектоскопами - выявление таких дефектов, как: коррозия (внутренняя, наружная, точечная и сплошная), стресс-коррозия под напряжением, расслоения, включения, разноориентированные трещины и др. дефекты стенки трубопровода.

6. Расчет на прочность и долговечность (остаточного ресурса) и экспертиза промышленной безопасности.

С 2007 г. нами выполнены работы по внутритрубной диагностике и экспертизе промышленной безопасности трубопроводов (в т.ч. подводных переходов) в ОАО АНК «Башнефть», ОАО «Удмуртнефть», ООО «Белкамстрой», ОАО «Белкамнефть», ЗАО «Нафтатранс», ОАО «Сургутнефтегаз», ООО «БПО-Отрадный», АО "Шешмаойл", "СНПС-Актобемунайгаз", ОАО "РН-Краснодарнефтегаз" и др.

Опыт работ по внутритрубной диагностике нефтегазопроводов более 10 лет.

Изобретение относится к измерительной технике и может найти применение в диагностике стенок трубопроводов. Способ внутритрубной диагностики включает определение дефектов ультразвуковым методом, определение дефектов методом магнитных истечений, совмещение и дополнение результатов исследований в процессе анализа полученных данных, согласно изобретению дополнительно производится исследование стенки трубопровода магнитооптическим способом, результаты которого совмещаются с результатами исследований ультразвуковым методом и методом магнитных истечений. Техническим результатом изобретения является повышение надежности внутритрубной диагностики за счет повышения точности определения длины трещины и возможность диагностирования, в частности, паутиной и многоканальной коррозии и длинношовного усталостного растрескивания, питтинга.

Изобретение относится к измерительной технике и может найти применение в диагностике стенок трубопроводов. Известен способ магнитооптической дефектоскопии, заключающийся в нахождении трещин в ферромагнитном материале с помощью устройства, состоящего из источника поляризованного света, формирователя светового пучка, пленки магнитооптического материала с защитным покрытием, анализатора, оптической системы формирования изображения дефектов, расположенных последовательно по ходу светового пучка, источника постоянного магнитного поля для возбуждения магнитного потока в исследуемом образце параллельно плоскости магнитооптического материала, полюса источника магнитного поля расположены симметрично с двух сторон относительно магнитооптического материала (Вилесов Ю.Ф, Вишневский В. Г. , Грошенко Н.А. Устройство для визуализации и топографирования магнитных полей. ИЛ 38-98, Крымский ЦНТИ, 1998). Устройство позволяет визуализировать скрытые дефекты в ферромагнитных материалах. Для этого в исследуемом образце создается магнитный поток. На дефектах исследуемого образца, например в трещинах в его объеме, образуются магнитные заряды, которые создают поле рассеяния, перпендикулярное поверхности образца. Поля рассеяния индуцируют в магнитооптическом материале структуру намагниченности, перпендикулярную ее поверхности, которая визуализируется за счет эффекта Фарадея. Скрытые дефекты ферромагнетика проявляются и наблюдаются в виде соседствующих темной и светлой областей. Недостатком способа является невозможность точного определения глубины дефекта. Магнитооптическим способом формируется детальное "плоское" изображение дефекта, но его глубина определяется с меньшей точностью. Дефекты, имеющие равные размеры, но расположенные на разной глубине, имеют различную яркость изображения. И наоборот, дефекты, видимые как равной интенсивности, могут иметь разную глубину. Поэтому затруднено точное определение степени опасности выявленного дефекта и эксплуатационной пригодности исследуемой части трубопровода. Известен также способ внутритрубной диагностики, включающий ультразвуковое сканирование стенки трубопровода, и исследование по истечениям магнитного потока (К.В. Черняев Анализ возможностей внутритрубных снарядов различных типов по обнаружению дефектов трубопроводов. //Трубопроводный транспорт нефти. 4, 1991. С.27-33.). В способе производят последовательное исследование трубопровода ультразвуковым и магнитным методом, сопоставляют результаты обследований, определяют дефекты, препятствующие возможности дальнейшей эксплуатации участка трубопровода. Недостатком способа является ограниченная разрешающая способность, уменьшающая точность определения параметров дефектов и не позволяющая диагностировать, в частности, паутинную и многоканальную коррозию и длинношовное усталостное растрескивание, межкристаллитную проникающую коррозию, питтинги. Низкая точность определения длины трещины снижает надежность внутритрубной диагностики. В основу изобретения поставлена задача усовершенствовать способ внутритрубной диагностики путем повышения надежности диагностики за счет увеличения точности определения параметров дефектов и расширения спектра регистрируемых дефектов. Поставленная задача решается тем, что в способе внутритрубной диагностики, включающем определение дефектов ультразвуковым методом, определение дефектов методом магнитных истечений, сопоставление результатов исследований в процессе анализа полученных данных, согласно изобретению дополнительно производится исследование стенки трубопровода магнитооптическим способом, результаты которого сопоставляются с результатами исследований ультразвуковым методом и методом магнитных истечений. Магнитооптическим способом хорошо обнаруживаются дефекты с малыми геометрическими размерами, например паутинная и многоканальная коррозия и длинношовное усталостное растрескивание, межкристаллитная проникающая коррозия, питтинги. За счет более высокого разрешения повышается точность определения длины обнаруженных трещин в стенке трубопровода и формируется детальное, с высоким разрешением, "плоское" изображение дефекта. Каждый из способов внутритрубной диагностики по отдельности хорошо регистрирует отдельные типы дефектов и неудовлетворительно другие типы дефектов. Наиболее качественное, с высоким разрешением, изображение дефекта формируется магнитооптическим способом. Однако глубина дефекта магнитооптическим способом определяется с ограниченной точностью. Сопоставление магнитооптического способа с акустическим и методом магнитных истечений позволяет преобразовать "плоское" изображение дефекта в "объемное". Акустооптический способ диагностики формирует "глубину" магнитооптического изображения дефекта. Совмещение трех типов диагностики позволяет как расширить спектр диагностируемых дефектов, так и повысить достоверность диагностики за счет сопоставления независимых результатов измерения. Способ реализуется следующим образом. Производится очистка внутренней поверхности трубопровода от грязи и ржавчины. Далее последовательно производят внутритрубную диагностику ультразвуковым и магнитным методами. Определяются дефекты, допускающие дальнейшую эксплуатацию, дефекты, не допускающие эксплуатацию трубопровода без проведения ремонтных работ, и дефекты, идентификация которых затруднена. После чего производится исследование неидентифицированных дефектов магнитооптическим способом диагностики. Если трещина в металле развивается, то ее концы имеют меньшую ширину, чем центральная часть, и не обнаруживаются способом-прототипом. Причем узкая часть трещины может иметь длину, превышающую продиагностированную способом-прототипом, и зафиксированную как допускающую процесс дальнейшей эксплуатации. Кроме того, несколько относительно мелких дефектов (допускающих по отдельности эксплуатацию трубопровода) могут быть связаны между собой трещинами в единый большой дефект, но способом-прототипом этот дефект не диагностируется вследствие малого пространственного разрешения. Дополнительное магнитооптическое исследование устраняет неточность определения длины трещины и повышает надежность диагностики. Пример. Дефект, обнаруженный ультразвуковым методом и методом магнитных истечений, дополнительно подвергается исследованию магнитооптическим методом. Для этого в исследуемом образце создается магнитный поток и производится визуализация полей рассеяния дефектов. На дефектах в стенках трубопровода, например трещинах, образуются магнитные заряды, которые создают поля рассеяния, силовые линии которых выходят из образца и наводят в магнитооптическом материале визуализатора структуру намагниченности, перпендикулярную ее поверхности. Геометрия структуры намагниченности, перпендикулярной поверхности магнитооптического материала, совпадает с геометрией дефектов. Освещают пленку магнитооптического материала поляризованным светом. Свет, отраженный от участков магнитооптического материала, соответствующих бездефектным областям исследуемого образца, гасится. Свет, прошедший через участки магнитооптического материала, содержащие перпендикулярную поверхности структуру намагниченности, изменит вследствие эффекта Фарадея ориентацию плоскости поляризации на ортогональную первоначальной и будет зарегистрирован. Сформируется изображение бездефектной области в виде темного поля и дефектов в виде светлых участков. Геометрические размеры и формы светлого участка на изображении воспроизводят геометрические размеры и форму дефекта в исследуемом образце, что позволяет дополнить картину изображения дефекта, полученного ультразвуковым способом и способом магнитных истечений новыми деталями и, соответственно, более точно определить параметры дефекта и эксплуатационную пригодность данного участка трубопровода. При наличии трещин в стенках трубопровода, отходящих от обнаруженного способом-прототипом дефекта, или связи между несколькими дефектами через трещины, не обнаруживаемые способом-прототипом, заявляемый способ позволяет более точно определить истинные диагностируемые параметры трубопровода. Точность определения параметров дефекта определяется периодом доменной структуры магнитооптического материала и разрешающей способностью оптики. Характерные размеры периода доменной структуры лежат в диапазоне 5 - 50 мкм. Соответственно магнитооптический метод позволяет обнаруживать дефекты с минимальными размерами порядка 10 - 100 мкм, что значительно превышает разрешающую способность заявляемого способа по сравнению со способом-прототипом. Более высокая разрешающая способность магнитооптического метода повышает точность определения параметров дефекта, например длины трещины и позволяет повысить надежность диагностики. Заявляемый способ позволяет повысить надежность внутритрубной диагностики за счет повышения точности определения параметров дефекта, например длины трещины, и позволяет диагностировать, в частности, паутинную и многоканальную коррозию и длинношовное усталостное растрескивание, межкристаллитную проникающую коррозию, питтинги. Более точная диагностик позволяет сократить расходы на обслуживание трубопровода и определение параметров дефекта визуальными методами. Дополнительная магнитооптическая диагностика трубопровода незначительно увеличит эксплуатационные расходы на диагностику, так как производится после ультразвуковой и методом магнитных истечений, и только тех дефектов, которые являются потенциально опасными для продолжения эксплуатации трубопровода.

Формула изобретения

Способ внутритрубной диагностики, включающий определение дефектов ультразвуковым методом, определение дефектов методом магнитных истечений, совмещение и дополнение и результатов исследований в процессе анализа полученных данных, отличающийся тем, что дополнительно производят исследование стенки трубопровода магнитооптическим способом, результаты которого сопоставляют с результатами исследований ультразвуковым методом и методом магнитных истечений.

Похожие патенты:

Изобретение относится к трубопроводному транспорту и может быть использовано для контроля движения очистных и диагностических объектов в трубопроводах в потоке перекачиваемого продукта, например скребков, разделителей, контейнеров, дефектоскопов и т.д

Изобретение относится к защитным устройствам, предотвращающим большие потери рабочей среды при разрушении трубопроводов (внезапной разгерметизации), и может быть использовано в гидро- и пневмосистемах в качестве пассивной защиты, перекрывающей расход рабочей среды в замкнутом контуре при аварийной ситуации, в частности для отсечения разгерметизированной части контура охлаждения ядерного реактора корпусного типа и предотвращения опорожнения (обезвоживания) активной зоны

Внутритрубное обследование проводится в четыре уровня :

1. Обследование трубопровода с помощью снарядов – профилемеров. Они определяют дефекты геометрии стенки труб (гофры, овальность, вмятины).

2. С помощью ультразвуковых снарядов – дефектоскопов ведут поиск, измеряют коррозионные дефекты, расслоение металла труб

3. С помощью магнитных снарядов – дефектоскопов выявляют дефекты кольцевых сварных швов.

4. С помощью более современных ультразвуковых дефектоскопов СД ведут обнаружение и измеряют трещиноподобные дефекты в продольных швах и в теле трубы.

Классиф-ция деф-ов труб, опр-ых с помощью ВТД .

4 класса дефектов:

1. дефекты геометрии(гофры, вмятины, овальности).Приводят к снижению несущ-ей спос-ти трубы,к сниж-ю произв-ти.

2. Деф-ты стенки трубы (расслоение Ме трубы,включения,трещины, царапины,корроз-е поврежд-ия, потери Ме местного происх-ия). Приводят к сниж-ию несущ. спос-ти трубы.

3. Деф-ты попер-х сварных швов (непровары,поры и смещ-ие кромок шва).

4.Деф-ты прод-го заводс-го шва (те же).

ВТД . Перед провед-ем ВТД нужно произв-ти очистку внутр-ей полости трубы от отложений.В кач-ве мат-ов очистных дисков для очистных снар-ов прим-ся полиуретан.

ВТД пров-ся в 4 этапа: 1.Выявл-ся деф-ты геометрии трубы с пом-ю снарядов профилемеров.

2.выявл-ся деф-ты стенки трубы с пом-ю ультразвук-х снарядов «Ультраскан».

3.Деф-ты попер-ых сварных швов с пом-ю магн-ых снарядов «Магнискан»

«-« намагн-ся труба

4. Выявл-ся деф-ты прод-ых свар-х швов,деф-ты,ориент-ые в прод-ом напр-ии-ультразв-ми снарядами большого разрешения «Ультраскан».

По рез-ам диагн-го обслед-ия все деф-ты классиф-ют на 3 гр-пы:

Дефекты типа ПОР;-деф-ты ДПР (деф-ы, подл-ие рем-ту);-деф-ты,не треб-ие провед-ие рем-та.Они заносятся в банк данных для послед-го мониторинга.

По рез-ам диагн-ки пров-ся выборочный рем-т или сплошной (при скопленни деф-ов)

С помощью программ определяют степень опасности выявленных дефектов.

Диагностика линейной части газопровода .

При эксплуатации мг происходит загрязнение его внутренней поверхности частицами породы, окалиной, отслоившейся от труб, конденсатом, водой, метанолом и.т.д. Это приводит к увеличению коэффициента гидравлического сопротивления и соответственно к снижению пропускной способности газопровода. Внутреннюю поверхность газопровода от загрязнений очищают следующими способами: периодически очистными устройствами без прекращения перекачки газа; разовым использованием очистных устройств с прекращением подачи газа;; установкой конденсатосборников и дренажей в пониженных точках газопровода; повышением скоростей потоков газа в отдельных нитках системы газопроводов и последующим улавливанием жидкости в пылеуловителях КС. В качестве очистных устройств применяют очистные поршни, скребки, поршни-разделители. В зависимости от вида загрязнений применяют и определенные очистные устройства. Основное требование к ним: быть износостойкими, обладать хорошей проходимостью через запорные устройства, простыми по конструкции и дешевыми. Наиболее часто применяют очистные устройства типа ДЗК-РЭМ, ОПР-М, позволяющие одновременно очищать полость газопровода от твердых и жидких веществ. Для очистки газопроводов больших диаметров применяют поршни-разделители ДЗК-РЭМ-1200, ДЗК-РЭМ-1400, ОР-М-1200, ОПР-М-1400. Поршень монтируют с двумя, тремя, и более очистными элементами. Для движения поршня по газ-ду на нем создается определенный перепад давления, который зависит в основном от его конструкции. Создаваемый перепад р на поршне в среднем равен 0,03-0,05 Мпа. На всех проектируемых и вновь вводимых мг предусматривают устройства по очистке внутренней полости газопровода от загрязнения при помощи пропуска очистных поршней. В состав устройства входят узлы пуска и приема очистных поршней, система контроля и автоматического управления процессов очистки. Узлы пуска и приема очистных поршней изготавливают на рабочее р 7,5 Мпа и температуру рабочей Среды от -60 до 60 оС. Для контроля за прохождением очистных устройств по газопроводу в отдельных его точках стоят анализаторы прохождения поршня. Разработан комплекс Волна-1, предназначенный как для сигнализации прохождения очистных устройств по газопроводу, так и для отыскания их в случае застревания в нем.


11. Переходы трубопроводов через водные преграды и классификация их по способу строительства.

Переходы через водные преграды делятся по способу строительства на:

1. подводные;

2. воздушные: балочные на опорах, вантовые переходы, арочные.

В границу воздушного перехода трубопровода через водную преграду входят надземная часть и участки подземного трубопровода длиной по 50 м от места выхода трубы на поверхность.

К подводным трубопроводам относятся линейная часть, проходящая через водные преграды шириной более 10 м по зеркалу воды в межень (наименьший уровень воды) и глубиной более 1,5 м.

Границами подводного перехода являются:

1. для многониточных переходов – это участок, ограниченный запорной арматурой, расположенной на берегах.

2. для однониточных – это участок, ограниченный горизонтом высоких вод не ниже отметок 10% обеспеченности.

Трубопроводы основной и резервной ниток на участке подводного перехода и от подводного перехода до КППСОД должен проектироваться в соответствии с высшей категорией сложности.

ПП через водные преграды, шириной более 75 м по зеркалу воды в межень, в обязательном порядке оборудуются резервными нитками.

ПП по способу строительства делятся на:

1. Построенные траншейным способом. Традиционный способ строительства. Недостатки: необходимость ежегодного обследования, неэкологичность способа, необходимость капительного ремонта через 10-15 лет.

2. Построенные методом наклонно-направленного бурения. Достоинства: обеспечивает надежность эксплуатации подводного участка трубопровода (до 30 лет); экологичность способа.

3. Построенные методом микротоннелирования. Применяется значительно недавно. Преимущества: надежность и долговечность. Подводные переходы построенные методом микротонелирования разделяются на: переходы с тоннелем межтрубное пространство, которого заполнено инертным газом под избыточным давлением; переходы с тоннелем межтрубное пространство которое заполнено жидкостью с антикоррозийными свойствами покрытием с избыточным давлением.

4. Построенные методом «труба в трубе».

В состав сооружений перехода через водные преграды входят следующие объекты:

1. участок магистрального трубопровода в границах перехода;

2. узлы береговой запорной арматуры и КППСОД;

3. берего- и дноукрепительные сооружения, предназначенные для предотвращения размыва береговой м русловой части перехода;

4. информационные знаки ограждения охранной зоны перехода на судоходных и сплавных реках; указательные знаки оси трубопровода на береговых участках; знаки закрепления геодезической сети перехода;

5. пункт наблюдения (блокпост) обходчика;

6. вдольтрассовая ЛЭП;

7. система ЭХЗ в границах перехода;

8. трансформаторная подстанция для обеспечения электроэнергией запорной арматуры и средств ЭХЗ;

9. средства и оборудования телемеханики;

10. стационарные маркерные пункты для выполнения работ по внутритрубной диагностике;

11. датчики отбора давления, манометрические узлы, сигнализаторы прохождения очистных устройств, системы обнаружения уточек, системы контроля межтрубного пространства;

12. опорные сооружения воздушных переходов.

Требования к оборудованию ПП.

1. ПП должны быть оборудованы системами обнаружения утечек, а переходы, построенные методом «труба в трубе» должны быть оборудованы системами контроля давления в межтрубном пространстве. Информация о давлении должна подаваться на диспетчерский пункт ближайшей станции.

2. Резервные нитки оборудуются КППСОД.

3. ПП через судоходные и сплавные реки шириной более 500 м по зеркалу воды в межень должны иметь блокпост обходчика, оборудованный телефонной и радиосвязью.

4. ПП оборудуются постоянными геодезическими знаками (реперами), которые закладываются ниже глубины промерзания грунта, чтобы предотвратить морозный подъем репера.

5. Задвижки или краны, установленные на переходе, должны быть электрифицированы, телемеханизированы и находится в системе телеуправления. Электроснабжение задвижек и кранов должно осуществляться от двух независимых источников.

6. Задвижки имеют технологический номер, указатели положения затвора, ограждения, предупреждающие аншлаги. Береговые задвижки и краны должны обеспечивать герметичность отключенного участка перехода.

7. Для освобождения ПП от нефти в аварийных ситуациях путем замещения водой с пропуском разделителей, узлы береговых задвижек основной и резервной нитки перехода оборудуются с вантузами с Ду не менее 150 мм.

8. Задвижки и краны переходов должны иметь обвалование. Основные требования к обвалованию: высота обвалования 0,7 м; внутренние откосы обвалования должны быть укреплены протифильтрационным экраном; расстояние от основных задвижек или кранов до подошвы обвалования составляет 1,5 м.

9. Для проведения работ по внутритрубной диагностике в границах перехода должны устанавливаться маркерные пункты.

Требования к оборудованию воздушных переходов.

1. На трубопроводе и опорах ВП устанавливаются реперы для выполнения геодезического контроля положений элементов конструкции перехода.

2. Склоны оврагов и берега водного перехода в местах установки береговых опор должны быть оборудованы гасителями скорости потока (растительный покров, ступенчаты перепады, водопойные колодцы).

3. Русловые опоры балочных переходов должны иметь ледорезы в соответствие с проектом.